Меню

Тиристорная регулировка зарядного тока аккумулятора



Зарядное Устройство для АКБ Авто на Двух Тиристорах

Самостоятельное изготовление зарядного устройства для свинцово-кислотных автомобильных аккумуляторов с точки зрения схемотехники не составляет особого труда. Даже при наличии различных регулировок, таких как установка зарядного тока, например, и автоматики отключения, сложность схемы не будет превышать средний уровень.

Вопрос здесь в другом — комплектующие для зарядного устройства. Если говорить о схемах, где в качестве преобразования сетевого напряжения выступает трансформатор, то именно его наличие и определяет целесообразность построения схемы. Потому как прежде чем специально покупать трансформатор, много раз подумаешь, глядя на нынешние « конские » ценники.

В этой статье я хочу предложить Вашему вниманию простейшую зарядку на двух тиристорах. Через один из них непосредственно осуществляется зарядка аккумулятора, а другой служит для отключения АКБ по её завершению. Ну и сразу о самой дорогой « запчасти » — о трансформаторе. Именно он в схеме определяет зарядный ток. Здесь использован силовой понижающий трансформатор с двумя вторичными обмотками по 15 В (отвод от середины). При наличии такого трансформатора, или хотя-бы железа для его изготовления можно изготовить простое и надёжное зарядное устройство, схема которого показана ниже.

Трансформатор, как я уже написал выше, содержит две вторичных обмотки по 15 В (или одну на 30 В с отводом от середины). Его мощность в данной схеме и будет определять зарядный ток аккумулятора. Выпрямляется напряжение со вторичных обмоток двумя диодами — VD1 и VD2 . Глядя на этот выпрямитель сразу бросается в глаза отсутствие сглаживающего конденсатора. Но на самом деле здесь нет никакой ошибки, потому как на этом основан весь принцип работы этого зарядного устройства. Давайте разберёмся почему.

Сначала рассмотрим цепь на тиристоре VS1 , через который и происходит непосредственно заряд аккумуляторной батареи. На аноде тиристора VS1 действует пульсирующее напряжение частотой 100 Гц по амплитуде напряжение это изменяется от нуля до 20 В . Короче говоря, это положительные полуволны со вторичной обмотки трансформатора Т1 . Для перехода тиристора в открытое состояние включена цепочка R1VD4 между его анодом и управляющим электродом. Ток в этой цепи имеет достаточное значение (около 15 мА ) для его открытия. При этом, когда тиристор находится в активном режиме работы, то горит светодиод VD4 . Между катодом тиристора и общим проводом, который соединён со средней точкой вторичной обмотки трансформатора Т1 , подключается заряжаемая аккумуляторная батарея. Так происходит заряд аккумулятора.

А теперь давайте рассмотрим какое условие нужно создать для закрытия тиристора и прекращения зарядки. Вариантов два: разорвать саму цепь заряда аккумулятора или снять управляющий ток. Так вот при снятии управляющего тока, тиристор всё равно останется в открытом состоянии (свойство тиристора), пока протекает достаточный ток (ток удержания) в цепи между его анодом и катодом. Но в этой схеме в цепи действует пульсирующее напряжение, и именно когда напряжение равно нулю происходит закрытие тиристора, потому как прекращается прохождение тока и тиристор больше не чего не удерживает. Этого бы не произошло при наличии сглаживающей ёмкости в выпрямителе т.к. напряжение всегда было бы отлично от нуля.

Теперь к цепи на VS2 , которая служит для отключения АКБ (закрытию тиристора VS1 ) по завершению заряда. Принцип основан на разнице напряжений АКБ в разряженном и заряженном состоянии. Напряжение работы стабилитрона VD3 (12 В) выставляется с помощью потенциометра R2 . Значение напряжения полного заряда АКБ должно соответствовать началу перехода VD3 в активное состояние, т.е. в состояние, когда через него будет протекать ток. При этом создастся условие для открытия тиристора VS2 . Об открытии тиристора VS2 будет сигнализировать светодиод VD5 зелёного цвета « завершение заряда ». При этом ток в цепи управляющего электрода VS1 станет уже недостаточным для его открытия, и он закроется в момент нулевого напряжения.

Печатная плата показана на рисунке выше. Вся настройка устройства сводится к установке порога срабатывания цепи тиристора VS2 подстроечным резистором R2 . Делают это на полностью заряженном АКБ . Порог открытия определяется свечением светодиода VD5 , в то время, когда VD4 наоборот тухнет.

Тиристор VS1 должен быть закреплён на теплоотводе. Светодиоды VD4 и VD5 любые на номинальный ток 10 мА красного и зеленого цвета соответственно.

Источник

Зарядное устройство для аккумуляторов на тиристорах

Всем здравствуйте. Представленная схема основным преимуществом которой является её очень надежная работа, неприхотливость по типу используемых компонентов и автоматическое отключение после полной зарядки подключенного аккумулятора. Эта схема также предотвращает выход из строя аккумулятор или зарядное, когда устройство подключено к аккумулятору в обратной полярности и наоборот.

Схема варианта зарядного устройства на тиристорах представлена на рисунке.

Переменное напряжение от 16 до 18В / 6А подается на входную клеммную колодку U1 от сетевого трансформатора, который должен быть рассчитан на мощность 120 ватт. Переменное напряжение от трансформатора выпрямляется с помощью моста на диодах D1, D2 и тиристоров TY1 и TY2. Путем управления тиристорами регулируется мощность заряда аккумулятора.

Тиристоры управляются генератором, который состоит из транзисторов T4 (n-p-n) и T3 (p-n-p). Смещение транзисторов поступает от делителей R9, R10 и R11. Генератор питается через диод D5 от выходных клемм зарядного устройства. Частично разряженный аккумулятор, подключенный в правильной полярности к выходным клеммам зарядного устройства, начнет заряжать конденсатор C3 своим напряжением через диод D5.

Читайте также:  На 405 двигателе регулируют клапана

Зарядный ток конденсатора определяется резистором R7. В течение нескольких мс напряжение на эмиттере транзистора T3 стабилизируется на величине, задаваемой положением подстроечного резистора R11. После этого транзисторы T3 и T4 резко открываются, заряд конденсатора C3 разряжается через резистор R8 и в цепи генерируется короткий положительный импульс напряжения. Весь этот процесс периодически повторяется с частотой около 1400 Гц.

Импульсы от генератора через транзисторы Т1 и Т2 поступают на управляющие электроды тиристоров. Транзисторы подключены как эмиттерные повторители и усиливают управляющий ток. Базы транзисторов защищены резисторами R5 и R6. Резисторы R1 и R2 обеспечивают безопасное переключение тиристоров. Диоды D3 и D4 предотвращают возникновение возможных отрицательных импульсов на управляющих электродах, которые необратимо вывели из строя тиристоры.

Положительные импульсы на управляющем электроде открывают тиристоры. Выпрямительный мост начинает работать, проводится зарядный ток и аккумулятор, подключенный к выходным клеммам зарядного устройства, заряжается. Тиристоры закрываются, когда напряжение на вторичной обмотке сетевого трансформатора пересекает ноль.

В течение каждого полупериода сетевого напряжения на тиристор поступает ряд управляющих импульсов. Когда тиристор открыт, эти импульсы не требуются, но благодаря короткому периоду импульса тиристоры переводятся в полностью безопасное состояние сразу после того, как напряжение переменного тока перешло через ноль.

Если батарея не подключена к выходу зарядного устройства, или выход закорочен, или изменена полярность батареи, генератор просто не работает, тиристоры постоянно закрыты, и ток не может протекать. Это защищает зарядное устройство от коротких замыканий на выходе и изменения полярности подключения аккумулятора.

Следовательно, зарядное устройство начнет зарядку только в том случае, если подключен частично разряженный аккумулятор и полярность его клемм соответствует полярности выходных клемм зарядного устройства. О правильном подключении аккумулятора свидетельствует зеленый светодиод D8, который подключается к выходным клеммам зарядного устройства. При неправильной полярности аккумулятора светодиод D7 не горит, а светодиод D8 не включается. Так же можно присмотреться к готовым изделиям зарядных устройств, выбор которых достаточно широк, ознакомится с зарядными устройствами можно ниже.

При зарядке аккумулятора напряжение на его клеммах увеличивается, а через делитель R9, R10 и R11 напряжение на транзисторе T3 также увеличивается. Поскольку напряжение на эмиттере T3 фиксировано (определяется стабилитроном D6), напряжение между базой и эмиттером T3 уменьшается по мере увеличения напряжения на T3. Когда напряжение между базой и эмиттером T3 падает ниже определенного значения, генератор перестает работать, а тиристоры остаются в не проводящем состоянии.

Таким образом, зарядка прерывается в зависимости от напряжения аккумулятора и установки подстроечного резистора R11. Подстроечный резистор R11 необходимо настроить таким образом, чтобы зарядка заканчивалась при достижении необходимого конечного напряжения батареи, которое обычно выбирается на уровне 14,6В (хотя по этому поводу много споров). Вариант печатную платы представлен на рисунке.

Источник

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте ув. читатель блога «Моя лаборатория радиолюбителя».

В сегодняшней статье речь пойдет о давно «заюзаной», но очень полезной схеме тиристорного фазоимпульсного регулятора мощности, которое мы будем использовать как зарядное устройство для свинцовых аккумуляторных батарей.

Начнем с того, что зарядное на КУ202 имеет целый ряд преимуществ:
— Способность выдерживать ток заряда до 10 ампер
— Ток заряда импульсный, что, по мнению многих радиолюбителей, помогает продлить жизнь аккумулятору
— Схема собрана с не дефицитных, недорогих деталей, что делает ее очень доступной в ценовой категории
— И последний плюс- это легкость в повторении, что даст возможность ее повторить, как новичку в радиотехнике, так и просто владельцу автомобиля, вообще не имеющего знания в радиотехнике, которому нужна качественная и простая зарядка.

Со временем попробовал доработанную схему с автоматическим отключением аккумулятора, рекомендую почитать Зарядное для автомобильного аккумулятора
В свое время я собирал эту схему на коленке за 40 минут вместе с травкой платы и подготовкой компонентов схемы. Ну хватит рассказов, давайте рассмотрим схему.

Схема тиристорного зарядного устройства на КУ202

Перечень используемых компонентов в схеме
C1 = 0,47-1 мкФ 63В

R1 = 6,8к — 0,25Вт
R2 = 300 — 0,25Вт
R3 = 3,3к — 0,25Вт
R4 = 110 — 0,25Вт
R5 = 15к — 0,25Вт
R6 = 50 — 0,25Вт
R7 = 150 — 2Вт
FU1 = 10А
VD1 = ток 10А, желательно брать мост с запасом. Ну на 15-25А и обратное напряжение не ниже 50В
VD2 = любой импульсный диод, на обратное напряжение не ниже 50В
VS1 = КУ202, Т-160, Т-250
VT1 = КТ361А, КТ3107, КТ502
VT2 = КТ315А, КТ3102, КТ503

Как было сказано ранее схема является тиристорным фазоимпульсным регулятором мощности с электронным регулятором тока зарядки.
Управление электродом тиристора осуществляется цепью на транзисторах VT1 и VT2. Управляющий ток проходит через VD2, необходимый для защиты схемы от обратных скачков тока тиристора.

Резистором R5 определяется ток зарядки аккумулятора, который должен быть 1/10 от емкости АКБ. К примеру АКБ емкостью 55А надо заряжать током 5.5А. Поэтому на выходе перед клемами зарядного устройства желательно поставить амперметр, для контроля за током зарядки.

Читайте также:  Схема регулировки зарядно пускового устройства

По поводу питания, для данной схемы подбираем трансформатор с переменным напряжением 18-22В, желательно по мощности без запаса, ведь используем тиристор в управлении. Если напряжение больше- R7 поднимаем до 200Ом.

Так же не забываем что диодный мост и управляющий тиристор надо ставить на радиаторы через теплопроводящую пасту. Так же если вы используете простые диоды типа как Д242-Д245, КД203, помните что их надо изолировать от корпуса радиатора.

На выход ставим предохранитель на нужные вам токи, если вы не планируете заряжать АКБ током выше 6А, то предохранителя на 6,3А вам хватит с головой.
Так же для защиты вашего аккумулятора и зарядного устройства, рекомендую поставить мою схему защиты от переполюсовки на реле или схему на компараторе, которая помимо защиты от переполюсовки защитит зарядное от подключения дохлых аккумуляторов с напряжением менее 10,5В.
Ну вот в принципе рассмотрели схемку зарядного на КУ202.

Печатная плата тиристорного зарядного устройства на КУ202

В собранном виде от Сергея

Скачать печатную плату
Пароль от архива jhg561bvlkm556

Удачи вам с повторением и жду ваших вопросов в комментариях

Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую универсальное зарядное устройство

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув .Admin-чек

83 комментариев для “Тиристорное импульсное зарядное устройство 10А на КУ202”

Собрал зарядник по Вашей схеме. Для автоматического включения-выключения была добавлена схема контроля заряда HX-M602. Но при токе, больше 4 А, начинает дёргаться стрелка амперметра на +-2 А, что влечёт за собой отключение питания схемой HX-M602 (первичка трансформатора). В чём может быть проблема? Выложил фотоотчёт на сайте (даже дал ссылку на эту страничку, в знак уважения)
https://www.drive2.ru/c/531066866068619702/

Я не знаю. А без этого модуля стабильно работает?

Я за диодным мостом ещо поставил кулер от БП ПК для принудительного охлаждения тиристора! Может он мешает?:)

По идеи он не должен мешать.попробуйте подключить чисто схему зарядного без излишеств
А вот с охлаждением после диодного моста поставьте еще один диод и подключите к нему вентилятор и небольшую емкость, 470мкф

Добавил диод на кулер… Нет эффекта! Добавил конденсатор 470 мкФ на 200 В (какой нашел) эффект стал заметен! Но еще не могу понять почему при 6-7 А горят предохранители на 10 А. Хочу на вход первички трансформатора поставить варистор и конденсатор на 0,5 мкФ 300 В! Спасибо за советы!

Прибор не точно мерит, возможно там больше 10. трансформатор 300Вт это много для тиристора ку202

Доброго времени суток. Собрал. На лампах работает, а на аккумуляторе ток не идет. Поменял диод на У.Э, менял тиристор и различные варианты резисторов R7, R8. В чем может быть причина?

НЕ знаю даже. Может че то не туда припаяли?

Схема рабочая! У меня уже с доработками полгода работает!

Здравствуйте, хотел повторить вашу схему зарядки, но прежде спрошу правильно ли я понял что что если я резистор R7 заменю на переменный, то смогу устанавливать необходимое мне напряжение, ну естественно не выше того что выдает трансформатор. Просто хотклось бы имень как минимум 3 рабочих величин напряжегия 14,4 ; 15,2; 16 вольт для разных типов аккумуляторов. Заранее спасибо за ответ.

Это обычный фазоимпульсный регулятор тока. Хотите что то универсальное, соберите это Зарядное для автомобильного аккумулятора , или это Блок питания, зарядное из бесперебойника

По мере нагрева тиристора, может пробиться, дать максимальный ток. Если охлаждение тиристорра будет слабое, эта схема будет опасна!

Читайте также:  Регулировка пиролизный котел атмос

Ne racionalnaya schema vremen vseobshego dificita. Razve seytchas problemy c tiristorami? Zatchem ogorod s diodami? Da i tiristory sleduet primenity normalynie, amper na 20…30.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Зарядное для авто аккумуляторов на тиристоре

Большой популярностью среди автолюбителей самодельщиков пользуются тиристорные автозарядки, в которых питание от мощного трансформатора поступает на АКБ через тиристор, управляемый открывающими его импульсами от генератора. В простейшем виде схема будет выглядеть вот так:

И нечего улыбаться — она реально рабочая и в своё время довольно долго успешно эксплуатировалась. Более сложный вариант, с отдельным генератором импульсов и контролем режимов заряда (напряжения на батарее) показан на следующей принципиальной схеме:

Но если опыт позволяет, луче собрать третье автоматическое зарядное тиристорное, которое кроме того что собрано многими людьми, имеет вполне неплохие параметры и возможности.

Схема и печатная плата ЗУ на SCR

Печатная плата нарисована вручную маркером. Вы можете сделать разводку самостоятельно, например на основании вот этого рисунка:

Параметры зарядного устройства

  • Выходное напряжение 1 — 15 В
  • Предельный ток до 8 А
  • Защита от перезаряда аккумулятора.
  • Защита от случайной короткого замыкания выхода
  • Защиты против смены полярности

Функциональное описание схемы

Переменное напряжение от вторичной обмотки трансформатора (около 17 В) подается на управляемый тиристорно-диодный мост, далее в зависимости от импульсов управления, следующих от контроллера, оно подается на клеммы аккумулятора.

Контроллер состоит из отдельного сетевого трансформатора, его напряжение формируется стабилизатором LM7812, двойной мультивибратор CD4538 делает управляющие импульсы на тиристорах, и имеет цепи контроля напряжения аккумуляторной батареи, состоящие из оптрона CNY17 и источника опорного напряжения TL431, работающего в качестве компаратора.

Если напряжение на выходе TL431 (R) ниже 2,5 В (система делителя с PR2 с резисторами), ток не протекает через TL431 через LED2 и CNY17 из-за блокировки транзистора BC238, что приводит к высокому состоянию на входе сброса выв.13 микросхемы CD4538 и её нормальной работе (если управляющие импульсы направляются на затворы тиристора), если напряжение увеличивается (в результате зарядки батареи), тогда начинает действовать TL431, ток прекращает течь через LED2 и CNY17, BC238 срабатывает и низкое состояние подается на выв.13, генерация управляющих импульсов на затворе тиристора прекращается, и напряжение на аккумуляторе отключается. Напряжение отключения устанавливается PR4 на уровне 14,4 В. Светодиод LED1 во время зарядки становится все более и более частым и почти на финальной стадии.

Также использовались 2 датчика температуры 80 C. Один приклеен к радиатору, а другой — к вторичной обмотке сетевого трансформатора, датчики соединены последовательно. Активация датчика приводит к отключению напряжения на оптопаре и блокировке мультивибратора CD4538 и отсутствию сигналов управления затворами тиристора.
Вентилятор постоянно подключен к аккумуляторной батарее.

Схема имеет переключатель AUT / MAN в положении MAN, при этом автоматическая система контроля напряжения аккумулятора отключена, и аккумулятор можно заряжать вручную, контролируя напряжение.

Вот несколько вариантов схем подключения выпрямителей и тиристоров:

  • Схема на рис. A. Наименее благоприятное включение, высокое падение напряжения и сильный нагрев моста плюс потери на тиристоре. Преимущества: можно использовать один радиатор, потому что выпрямительные мосты обычно изолированы от корпуса.
  • Схема на рис. Б наиболее выгодна, потери только на тиристорах. Но два радиатора.
  • Схема на рис. С умеренно выгодна. Три или один радиатор (с одним радиатором, одним двойным диодом Шоттки или двумя диодами с катодом на корпусе.

Это нормальные напряжения на выводах чипа CD4538:

1 — 0 В
2 — от 11,5 В до 6 В при повороте потенциометра P
3,16 — 12 В
4,6,11 — от 2 В до 12 В при повороте P
5 — приблизительно 10 В
10,12 — около 0,1 В
13 — около 11,5 В с выключенным LED1
14 — около 12 В
15 — 0

В коллекторе BD135 около 19,9 В. Для более детальной настройки понадобится осциллограф. Схема довольно проста и при правильной сборке должна запускаться сразу после подачи напряжения.

Фото процесса изготовления зарядки

Диодно-тиристорный мост размещен на отдельных платах и может проводить ток до 20 А, радиаторы изолированы друг от друга и корпуса. Вторичная обмотка трансформатора намотана проволокой диаметром около 2 мм, и при принудительном охлаждении она может дать долговременно около 8 А (достаточно для большинства нужд автолюбителей, заряжая батареи до 82 А/ч). Но ничего не мешает установить трансформатор с ещё большей мощностью.

Тут использованы отдельные измерительные провода, которые подключаются к токовым клеммам.

Зарядка АКБ: зарядный ток составляет 1/10 от емкости батареи, через некоторое время, в зависимости от степени разряда, LED1 начинает мигать и вскоре приближается к напряжению 14,4 В. Чаще всего зарядный ток тоже падает, в конце зарядки диод светит почти все время. Небольшой гистерезис вводится электролитическим конденсатором на R-выводе TL431.

Стоимость сборки самодельной ЗУ определяется основным трансформатором (160 Вт, 24 В) примерно 1000 руб., а также мощными диодами и тиристорами. Обычно этого добра в радиолюбительских закромах хватает (как и готовых корпусов от чего-то), так что в идеале оно не будет стоить ни копейки.

Источник

Adblock
detector