Меню

Сварочная дуга и ее свойство регулировки



Сварочная дуга. Характеристика сварочной дуги

Различают два режима работы этой системы: 1) статический, когда величины напряжения и тока в системе в течение достаточно длительного времени не изменяются; 2) переходной (динамический), когда величины напряжения и тока в системе непрерывно изменяются. Однако во всех случаях режим горения сварочной дуги определяется током (IД), напряжением (UД), величиной промежутка между электродами (так называемым дуговым промежутком) и связью между ними.

В дуговом промежутке IД (рис. 1, а) различают три области: анодную 1, катодную 2 и столб дуги 3. Падение напряжения в анодной и катодной областях постоянно для данных условий сварки. Падение напряжения в единице длины столба дуги — также величина постоянная. Поэтому зависимость напряжения дуги от ее длины имеет линейный характер (рис. 1, б).

Устойчивость сварочной дуги определяется соотношением между током и напряжением. Графическое изображение этой зависимости (рис. 2) при постоянной длине дуги называется статической вольт-амперной характеристикой дуги. На графике отчетливо видны три основных участка: увеличение тока на участке I сопровождается понижением напряжения на дуге; на участке II напряжение на дуге изменяется мало; на участке III напряжение возрастает. Режимы горения сварочной дуги, соответствующие первому участку, неустойчивы при напряжениях существующих источников питания. Практически сварочная дуга будет устойчивой на втором и третьем участках вольт-амперной характеристики. С увеличением или уменьшением длины дуги характеристики сместятся соответственно в положение 2 и 3 (см. рис. 2). Для электродов меньшего диаметра характеристики смещаются влево, большего диаметра — вправо.

Рис. 1. Сварочная дуга, горящая между неплавящимися электродами:а — схема дуги, б — зависимость напряжения дуги (Уд) от величины дугового промежутка (/д): 1 — анодная область, 2 — катодная область, 3 — столб дуги

Рис.2 Вольт-амперная характеристика дуги (ВАХ)

Показанная на рис. 2 вольт-амперная характеристика дуги снята при постоянной длине сварочной дуги. При сварке плавящимся электродом непрерывно меняется длина дугового промежутка. В этих случаях следует пользоваться характеристиками, определяющими зависимость между напряжением и током дуги при постоянной скорости подачи электродной проволоки (рис. 3, кривые 1 и 2). Каждой скорости подачи соответствует определенный диапазон токов, при котором устойчиво горит сварочная дуга и плавится электрод. В этом случае при малых изменениях тока напряжение изменяется в больших пределах. Эту зависимость принято называть характеристикой устойчивой работы. Она так же, как и вольт-амперная характеристика, зависит от длины вылета электрода и скорости подачи.

Эти закономерности справедливы для постоянного и переменного тока, так как род тока не влияет на форму вольт-амперных характеристик электрической дуги. На форму характеристики влияют геометрия и материал электродов, условия охлаждения столба дуги и характер среды, в которой происходит разряд.

Устойчивость сварочной дуги и режима сварки зависят от условий существования дугового разряда и свойств, параметров источников питания и электрической цепи. Внешней характеристикой источника питания (кривая 3 на рис. 3) называется зависимость напряжения на его зажимах от тока нагрузки. Различаются следующие внешние характеристики источников питания (рис. 4): падающая 1, полого-падающая 6, жесткая 5, возрастающая 3 и вертикальная 2. Источник питания с той или иной внешней характеристикой выбирается в зависимости от способа сварки. Регулировочное устройство каждого источника дает ряд внешних характеристик («семейство характеристик»). Установившийся режим работы системы: «сварочная дуга — источник питания» определяется точкой пересечения А внешней характеристики источника питания (1, 2, 3, 5 или 6) и вольт-амперной характеристики 7 сварочной дуги.

Рис.3 Вольт-амперная характеристика сварочной дуги (ВАХ) 1,2 при постоянной скорости подачи проволоки (характеристика устойчивой работы) и внешние характеристики источников питания 3, 4 и 5

Рис.4 Внешние характеристики источников питания 1, 2, 3, 5, 6 и вольт-амперные характеристики сварочной дуги 4, 7

Процесс сварки будет устойчив, если в течение длительного времени дуговой разряд существует непрерывно при заданных значениях напряжения и тока. Как видно из рис. 4, в точках А и В пересечения внешних характеристик дуги 7 и источника питания будет иметь место равновесие по току и напряжению. Если по какой-либо причине ток в сварочной дуге, соответствующий точке А, уменьшится, напряжение ее окажется меньше установившейся величины напряжения источника питания; это приведет к увеличению тока, т. е. к возврату в точку А. Наоборот, при случайном увеличении тока установившиеся напряжения источника питания оказываются меньше напряжения дуги; это приведет к уменьшению тока и, следовательно, к восстановлению режима горения сварочной дуги. Из аналогичных рассуждений ясно, что в точке Б сварочная дуга горит неустойчиво. Всякие случайные изменения тока развиваются до тех пор, пока он не достигнет величины, соответствующей точке устойчивого равновесия А или до обрыва дуги. При пологопадающей внешней характеристике (кривая 6) устойчивое горение дуги будет также происходить в точке А.

При работе на падающем участке вольт-амперной характеристики дуги внешняя характеристика источника в рабочей точке должна быть более крутопадающей, чем статическая характеристика сварочной дуги. При возрастающих характеристиках дуги внешние характеристики источника могут быть жесткими 5 или даже возрастающими 3.

При ручной сварке, когда возможны изменения длины дуги, она должна обладать достаточным запасом устойчивости.

При прочих равных условиях запас устойчивости возрастает с ростом крутизны внешней характеристики источника питания. Поэтому для ручной сварки применяют источники с крутопадающими характеристиками: сварщик может удлинить дугу, не опасаясь, что она оборвется, или укоротить ее, не боясь чрезмерного увеличения тока.

Саморегулирование сварочной дуги. При автоматической или полуавтоматической сварке плавящимся электродом скорость подачи его (va) равна скорости плавления. При случайном уменьшении дугового промежутка (кривая 4 на рис. 4) ток увеличивается и проволока начнет плавиться быстрее. В итоге дуговой промежуток постепенно увеличится и сварочная дуга достигнет первоначальной длины. То же произойдет при случайном удлинении дуги. Это явление называется саморегулированием сварочной дуги, так как восстановление исходного режима происходит без воздействия какого-либо регулятора. Саморегулирование происходит тем активнее, чем положе внешняя характеристика источника питания и больше скорость подачи электрода. Поэтому для механизированной сварки плавящимся электродом следует выбирать источники питания с пологопадающими внешними характеристиками. При сварке на постоянном токе в защитных газах, когда статическая характеристика сварочной дуги приобретает возрастающую форму, для систем саморегулирования рационально применять источники с жесткой характеристикой. Однако их напряжение холостого хода невелико и может быть даже меньше рабочего напряжения дуги, что затрудняет ее первоначальное возбуждение. В этих случаях желательно применение источников питания, у которых внешняя характеристика в рабочей части жесткая или пологовозрастающая вольт-амперная характеристика, а напряжение холостого хода несколько повышенное, как это показано пунктиром на рис. 4.

Читайте также:  Как регулировать силу тока в usb

Сварочная дуга переменного тока требует от источников питания надежного повторного возбуждения сварочной дуги. Это достигается правильным выбором соотношений между напряжениями холостого хода, зажигания и горения дуги и параметрами сварочной цепи. Наиболее простой способ получения устойчивой сварочной дуги — включение в сварочную цепь реактивного сопротивления. Благодаря этому, в момент повторного возбуждения дуги напряжение на дуге может резко увеличиться (рис. 5) до значения напряжения зажигания (U3). Пунктирная кривая t/xx изображает напряжение источника питания при холостом ходе. При нагрузке, в связи с наличием реактивного сопротивления, сварочный ток отстает по времени от напряжения.

При обрыве дуги напряжение на дуговом промежутке должно подняться до величины, соответствующей мгновенному значению напряжения холостого хода источника питания. Благодаря отставанию тока от напряжения, такое напряжение оказывается достаточным для повторного возбуждения сварочной дуги (Un).

Перенос металла в сварочной дуге и требования к динамическим свойствам источников питания. Различают следующие виды переноса металла электрода в сварочную ванну: крупнокапельный, характерный для малых плотностей тока; мелкокапельный, струйный, когда металл стекает с электрода очень мелкими каплями. Капли расплавленного металла периодически замыкают дуговой промежуток, либо если не происходят короткие замыкания, периодически изменяют длину дуги. При большой плотности тока в электроде наблюдается мелкокапельный перенос металла, без заметных колебаний длины и напряжения сварочной дуги.

Напряжение, ток и длина дуги претерпевают периодические изменения от холостого хода к короткому замыканию; в рабочем режиме происходит горение дуги, образование и рост капли. В дальнейшем при коротком замыкании между каплей и ванной ток резко увеличивается. Это приводит к сжатию капли и к разрушению мостика между каплей и электродом. Напряжение почти мгновенно возрастает и сварочная дуга снова возбуждается, т. е. процесс периодически повторяется. Смена режимов происходит в течение долей секунды. Поэтому источник питания должен обладать высокими динамическими свойствами, т. е. большой скоростью повышения напряжения при разрыве цепи и нужной скоростью нарастания тока.

Рис. 5 Осциллограмма тока и напряжения дуги при сварке переменным током.

При малой скорости нарастания тока в ванну поступает нерасплавленная проволока. Она сравнительно медленно разогревается па большом участке, которым затем разрушается. Если ток возрастает слишком быстро, мостик между ванной и каплей электродного металла быстро перегревается и разрушается со взрывом. Часть расплавленного металла разбрызгивается и не попадает в шов.

Чтобы избежать разбрызгивания, необходимо повысить электромагнитную инерцию источника питания путем увеличения индуктивности сварочной цепи.

Источник

Лекция №3 Сварочная дуга и ее свойства

Сварочная дуга и ее разновидности

Сварочная дуга — это мощный устойчивый электри­ческий разряд в газовой среде между двумя электрода­ми, или между электродами и изделием.

Электрическим разрядом называется прохождение электрического тока (т. е. направленное движение заря­женных частиц) через газовую среду. Различают несколь­ко видов такого разряда: искровой, дуговой, тлеющий и т. д., которые отличаются длительностью, силой тока, напряжением и другими характеристиками.

Что представляет собой сварочная дуга?

— принципу действия — сварочные дуги прямого, кос­венного и комбинированного действия;

— роду тока — дуга постоянного тока и дуга перемен­ного тока (трехфазного или однофазного);

— длительности горения (стационарная дуга, импуль­сная дуга);

— полярности постоянного тока — дуга прямой по­лярности и обратной полярности;

— степени сжатия — свободная или сжатая дуга;

— виду среды, в которой происходит горение дуги — открытая, закрытая и дуга в среде защитных газов;

— виду применяемого электрода — дуга с плавящим­ся и неплавящимся электродом;

— виду статической вольтамперной характеристики — дуга с жесткой, падающей и возрастающей характерис­тикой;

— длине дуги — короткая, нормальная и длинная.

По принципу работы различают сварочные дуги пря­мого, косвенного и комбинированного действия (рис. 10). Дугой прямого действия называется дуговой разряд, который происходит между электродом и деталью (изде­лием). Дуговой разряд между двумя электродами (атомно-водородная сварка) называется косвенной дугой, а сочетание дуги прямого и дуги косвенного действия — комбинированной дугой. Примером комбинированной дуги является трехфазная дуга, у которой две дуги элект­рически связывают электроды со свариваемой конструк­цией, а третья горит между двумя электродами, изолиро­ванными друг от друга.

Сварочные дуги подразделяются также по роду исполь­зуемого электрического тока (постоянный, переменный, трехфазный) и по длительности горения (стационарная дуга, импульсная дуга). Кроме того, при использовании постоянного тока различают дуги прямой и обратной по­лярности. При прямой полярности отрицательный полюс электрической цепи (катод) находится на электроде, а по­ложительный (анод) — на основном металле. При обрат­ной полярности анод на электроде, а катод на изделии.

Читайте также:  Советы бывалых регулировка карбюратора

Дуги различают и в зависимости от типа применяемого электрода: дуга между плавящимся электродом (металли­ческим) и неплавящимся (вольфрамовый, угольный и т. д.).

а — прямого действия; б — косвенного действия;

в — комбинированного действия

Рисунок 10 — Электрическая дуга

При сварке плавящимся электродом сварной шов обра­зуется за счет расплавления электрода и кромок сварива­емого (основного) металла. При сварке неплавящимся элек­тродом шов заполняется металлом свариваемых частей.

При сварке плавящимся электродом его необходимо непрерывно подавать (по мере оплавления) в зону сварки и по возможности поддерживать постоянную длину дуги. Длиной дуги называется расстояние от конца электрода до поверхности кратера (углубления) в сварочной ванне.

При сварке неплавящимся электродом длина дуги с течением времени возрастает, поэтому нужна коррек­тировка.

Дуга считается короткой, если ее длина составляет 2…4 мм, нормальной — при длине 4-6 мм; при длине дуги свыше 6 мм дуга называется длинной.

В зависимости от того, в какой среде происходит дуго­вой разряд, различают три основные разновидности:

— так называемую открытую дугу, горящую в возду­хе, где в состав газовой среды входит воздух с примеся­ми паров свариваемого металла, материала электродов и материала электродных покрытий;

— закрытую дугу, горящую под флюсом, в которой газовая среда зоны дуги состоит из паров основного ме­талла, присадочной проволоки и защитного флюса;

— дугу, горящую в среде защитных газов (также яв­ляется закрытой дугой). В этом случае газовая среда в зоне других состоит из защитного газа, паров основного металла и металла проволоки.

Структура сварочной дуги

Различные вещества по-разному проводят электричес­кий ток. Проводимость всякого вещества зависит от ко­личества свободных электрических зарядов (электродов и ионов), которые находятся в этом веществе. Кроме того, проводимость определяется скоростью, с которой эти сво­бодные частицы передвигаются. То есть, чем больше в материале имеется свободных носителей зарядов и чем более они подвижны, тем больше проводимость этого ма­териала и тем меньше его сопротивление.

Газы при нормальных условиях не проводят электри­ческого тока. Данный факт объясняется тем, что в обыч­ных условиях газы состоят из нейтральных молекул и ато­мов, а следовательно, не являются носителями зарядов.

Газы начинают проводить электрический ток, если в их составе появляются электроны, положительные и от­рицательные ионы. Это становится возможным при не­которых условиях.

Процесс образования в газе электронов и ионов назы­вается ионизацией, а газ, в котором имеются заряжен­ные частицы — ионизированным.

Чтобы освободить электрон от связи с атомным ядром (в результате чего и происходит образование положитель­ного иона), нужно сообщить ему некоторое количество энергии. В результате электрон перейдет на новую орби­ту с более высоким энергетическим уровнем, а молекула или атом будут находиться в возбужденном состоянии.

Работа, которую нужно совершить для того, чтобы об­разовать ион, называется работой ионизации(или по­тенциалом ионизации)и выражается в электрон-воль­тах (ЭВ). Энергия, сообщенная электрону для приобрете­ния скорости, необходимой для отрыва его от атома, на­зывается потенциалом возбуждения и также измеряет­ся в электрон-вольтах.

Различные химические элементы имеют разную вели­чину потенциалов возбуждения и ионизации (от 3,9 до 25,5 ЭВ). Наименьшими потенциалами ионизации обла­дают щелочноземельные металлы — такие элементы спо­собствуют зажиганию к устойчивому горению дуги, по­этому их вводят в состав электродных покрытий.

Положительные и отрицательные ионы, а также сво­бодные электроны в газах возникают при некоторых ус­ловиях:

— воздействии на них электрического поля;

— прохождении через газ рентгеновских, ультрафиолетовых и космических лучей.

Сварочные дуги классифицируются по ряду признаков:

Соответственно различают виды ионизации газов: со­ударением частиц, фотоионизацию (ионизация фотона­ми), термическую, электрическим полем.

Дуговой промежуток в сварочной дуге разделяется на три области (рис. 11): катодную, анодную и столб дуги. В процессе горения дуги на электроде и основном металле возникают активные пятна, которые представляют собой наиболее нагретые участки и проводят весь ток дуги. Ак­тивные пятна называются соответственно анодным и ка­тодным.

С катодного пятна происходит дополнительный выход электродов, кроме образовавшихся при ионизации в меж­дуэлектродном пространстве. Электроны, которые выхо­дят с поверхности электрода, называются первичными. Выход этих электронов происходит за счет различных факторов: термоэлектронной эмиссии (испускания), автоэлектронной эмиссии, ионизации на катоде.

1 — катодная область; 2 — столб дуги; 3 — вводная область

Рисунок 11 — Схема строения сварочной дуги

Термоэлектронная эмиссия электронов происходит в результате нагрева поверхности электрода до высокой температуры, при которой электроны могут приобрести скорость, достаточную для отрыва их от атомов. Элект­роны открываются от поверхности катода и устремляют­ся к аноду. Чем больше температура нагрева электрода, тем больше количество вырываемых электронов.

Автоэлектронная эмиссия электронов происходит из-за высокой напряженности электрического поля. Чем больше разность потенциалов между электродами, тем больше испускание с катода первичных электродов. Ионизация на катоде происходит в результате соударе­ний с электронами положительных ионов. Положительные ионы образуются в результате ионизации в столбе дуги и притягиваются к катоду. Ионизация может происходить также в результате воздействий излучения (фотоионизация).

В столбе дуги происходит образование так называемых вторичныхэлектронов, а также положительных ионов (вторичными называют электроны, выбитые с орбит ней­тральных атомов, находящихся в междуэлектродном про­странстве).

Таким образом, в столбе дуги электроны движутся к аноду, положительные ионы — к катоду. При этом ионы и электроны могут снова соединяться, образуя нейтраль­ные атомы. Этот процесс называется рекомбинацией. В результате рекомбинации процессы образования и ис­чезновения заряженных частиц в дуге уравновешивают­ся и степень ионизации нагретого газа остаётся посто­янной.

Читайте также:  Как регулировать карбюратор бензогенератора

Анодная область дуги включает в себя анодное пятно и приэлектродную область. Анодное пятно бомбардиру­ют электроны, в результате чего образуются ионы. От сильной бомбардировки анодная область всегда имеет форму, напоминающую форму чаши (или — выгнутой сферы) и называемую сварочным кратером.

Способы зажигания сварочной дуги

Дуга может возникать либо в случае пробоя газа (воз­духа), либо в результате соприкосновения электродов с последующим их отведением на расстояние нескольких миллиметров.

Первый способ (пробой воздуха) возможен только при больших напряжениях, например, при напряжении 1000 В и зазоре между электродами в 1 мм. Такой способ возбуждения дуги обычно не применяется из-за опаснос­ти высокого напряжения.

При питании дуги током высокого напряжения (более 3000 В) и высокой частоты (150-250 кГц) можно полу­чить пробой воздуха при зазоре между электродом и де­талью до 10 мм. Такой способ зажигания дуги менее опа­сен для сварщика и его нередко используют. (Для этого в сварочную цепь необходимо включить осциллятор.)

Второй способ зажигания дуги требует разности по­тенциалов между электродом и изделием 40—60 В, поэто­му применяется чаще всего.

Когда электрод соприкасается с изделием, создается замкнутая сварочная цепь. В момент, когда электрод от­водится от изделия, электроды, которые находятся на на­гретом от короткого замыкания катодном пятне, отрыва­ются от атомов и электростатическим притяжением дви­гаются к аноду, образуя электрическую дугу. Дуга быстро стабилизируется (в течение микросекунды). Электроны, которые выходят с катодного пятна, ионизируют газовый промежуток и в нем появляется также полный ток. Скорость зажигания дуги зависит от характеристик источника питания, от силы тока в момент соприкосно­вения электрода с изделием, от времени их соприкосно­вения, от состава газового промежутка.

Чем меньше потенциал ионизации вещества между электродами (или между электродом и изделием), тем быстрее и в большем количестве возникнут ионы и тем быстрее произойдет переход от электронной дуги к элек­тронно-ионной.

На скорость возбуждения дуги влияет, в первую оче­редь, величина сварочного тока. Чем больше величина тока (при одном и том же диаметре электрода), тем боль­шим становится величина сечения катодного пятна и тем большим будет электродный ток в начале зажигания дуги. Большой электронный ток вызовет быструю ионизацию и переход к устойчивому дуговому разряду.

При уменьшении диаметра электрода (т. е. при увели­чении плотности тока) время перехода к устойчивому ду­говому разряду еще больше сокращается.

На скорость зажигания дуги влияют также полярность и род тока. При постоянном токе и обратной полярности (т. е. плюс источника тока подключается к электроду) ско­рость возбуждения дуги выше, чем при переменном токе.

Повторные зажигания сварочной дуги после ее угаса­ния из-за коротких замыканий каплями электродного металла будут возникать самопроизвольно, если темпе­ратура торца электрода будет достаточно высокой.

Перенос расплавленного металла сварочной дугой

В процессе сварки плавящимся электродом на его кон­це под действием высокой температуры происходит расплавление металла, образование капли, отрыв этой кап­ли и перенос ее на изделие. В зависимости от размера капель и скорости их образования различают капельный и струйный перенос электродного металла на изделие (рис. 12).

а— крупнокапельный; б— струйный; I—IV— последовательные этапы

процесса; dК — диаметр капли; dЭ — диаметр электрода

Рисунок 12 — Процесс переноса электродного металла на изделие при короткой дуге

Размеры капель и скорость их образования зависят от вида дуговой сварки, силы тока, длины дуги, диаметра электродов и других факторов.

При ручной дуговой сварке в виде капель переносится примерно 95% электродного металла, остальные 5% со­ставляют брызги металла и пары, значительная часть которых осаждается на изделие.

При дуговой сварке штучными электродами происхо­дит капельный перенос без замыкания каплями дугового промежутка. В этих условиях большая часть капель ока­зывается заключенными в оболочку из шлака, который образуется при расплавлении электродного покрытия. Тот же процесс наблюдается при сварке в защитном газе и сварке порошковой проволокой.

При струйном переносе электродного металла образу­ются мелкие капли, которые непрерывно следуют одна за другой, составляя цепочку (струю). Струйный пере­нос металла возникает при большой плотности тока (на­пример, при сварке проволокой малого диаметра). Так, при полуавтоматической сварке в аргоне проволокой ди­аметром 1,6 мм струйный перенос металла начинается при токе величиной около 300 А. При сварке на токах, ниже этого значения, наблюдается капельный перенос металла.

Как правило, струйный перенос приводит куменьше­нию выгорания легирующих примесей в сварочной про­волоке и повышению чистоты метала шва. Кроме того, скорость расплавления сварочной проволоки увеличива­ется. Таким образом, струйный перенос металла имеет ряд преимуществ перед капельным переносом.

При сварке штучными электродами струйный перенос электродного металла невозможен из-за невысокой плот­ности тока на электроде (порядка 10—20А/мм 2 ).

Литература:1 осн. [26-44], 2 осн.[35-47], 1-3 доп.

1. Что называют сварочной дугой?

2. Какие разновидности сварочных дуг существуют и как они классифицируются?

3. Из каких участков состоит дуговой промежуток?

4. Какие способы зажигания дуги Вам известны?

5. Чем отличаются капельный и струйный перенос электро­дного металла?

6. По каким признакам классифицируется сварочная дуга?

7. При какой длине дуги она считается нормальной?

8. Какие виды ионизации газов Вам известны?

9. За счет чего происходит термоэлектронная эмиссия электронов?

Дата добавления: 2014-01-06 ; Просмотров: 6618 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник