Меню

Схемы для регулировки постоянным током



Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторов

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Читайте также:  Регулировка подачи воды теплого пола

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятора

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к блоку питания

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

Как заряжать автомобильный аккумулятор?

Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Схема блока питания с регулировкой тока и напряжения 2.4…28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Читайте также:  Механизм регулировки спинки сидения своими руками

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Источник

Как сделать простой регулятор напряжения своими руками

28 сентября 2018

Время на чтение:

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

Читайте также:  Регулировка арматура двухкнопочная для унитаза

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Источник

Adblock
detector