Меню

Системы регулировки температуры нагревателей



Терморегуляторы для батарей. Виды и преимущества терморегуляторов

Терморегуляторы для батарей – устройства для оптимизации температуры в отопительный сезон в помещении. Регуляторы тепла используются для понижения температуры при интенсивном нагреве от центрального отопления. Терморегуляторы также применяются для сокращения расходов на источники тепла.

  • Виды терморегуляторов
  • Устройство терморегулятора
  • Конструктивные особенности
  • Порядок установки
  • Где купить терморегулятор

Виды терморегуляторов

Вопреки распространенному заблуждению, шаровой кран, устанавливаемый на подводящей трубе, не является терморегулятором. Данный механизм, прежде всего, выступает в качестве запорной арматуры с простым устройством, и его использование целесообразно лишь в случаях, когда необходимо экстренно приостановить подачу теплоносителя в радиатор отопления.

Почему нежелательно использовать шаровой кран в роли терморегулятора?

— При слишком частом включении и выключении крана, он перестаёт выполнять свою функцию, а именно перекрывать теплоноситель (воду/антифриз/масло в системе);

— При частых и быстрых открытиях крана под давлением увеличивается вероятность возникновения гидравлического удара, способного спровоцировать аварийную ситуацию;

— С помощью шарового крана невозможно добиться плавного и желаемого изменения потока теплоносителя;

— Крайне велика угроза нарушения герметичности затвора при работе в промежуточном положении. Связано это, в первую очередь, с отложением твердых частиц на зеркальную поверхность шара.

Автоматические терморегуляторы для радиаторов отопления

Лучшим вариантом являются автоматические терморегуляторы, которые поддерживают заданную температуру без постоянного участия человека. Настоящие терморегуляторы работают автоматически после определенной настройки.

Устройство прибора

Терморегулятор состоит из запорного механизма в виде клапана и регулирующего устройства. Клапан – запорный механизм, который устанавливается на подающую трубу. Управляющий механизм устанавливается непосредственно на клапан. Под воздействием температуры он заставляет запорный механизм закрывать или открывать просвет трубы для теплоносителя.

Термоголовка — Это устройство работает от воздействия окружающей температуры. Интенсивность обогрева снижается за счет уменьшения подачи горячей воды в качестве теплоносителя. Не влияет на температуру теплоносителя, нет источника питания.

Термостат — Это прибор, который имеет специальный температурный датчик и работает через процессор. Программирование терморегулятора осуществляется через процессор. Современные виды применяются в системах «умный дом». Процесс управления осуществляется оператором или через Интернет.

В городских квартирах такого эффекта можно добиться, если установить счетчик на отопление, а не платить по существующему тарифу. Это очень существенно в связи с ростом цен. Цена терморегуляторов очень быстро окупается. При таком щадящем режиме увеличивается срок службы приборов отопления.

Кроме поддержания оптимальной температуры в помещении, терморегуляторы значительно сокращают расходы на отопление. Экономное расходование энергоносителей в период постоянного повышения цен значительно сокращает коммунальные расходы. Теперь содержание загородного дома получается даже более экономным, чем оплата за городскую квартиру, где цены за различные услуги растут в геометрической прогрессии. По этой причине многие предпочитают проживать в частном доме, где хозяин оплачивает только свои расходы. При помощи системы терморегуляторов можно очень выгодно расходовать топливо, при этом поддерживать комфортную температуру и регулировать параметры отопления по своему усмотрению.

Конструктивные особенности

Принцип определяется конструктивными особенностями. Внутри головки терморегулятора сильфон с веществом, реагирующим на перепады температуры. Он находится в жидком или газообразном состоянии. Сильфон – это герметичная камера с растягивающимися стенками, которые изменяют свое состояние под действием температуры. При нагревании расширяются, а при остывании приходят в исходное состояние.

При установке устройства теплоноситель нагревает вещество внутри сильфона. Камера растягивается и закрывает запорный элемент. Труба перекрывается для теплоносителя. По мере остывания камера приходит в исходное состояние, давление уменьшается и клапан открывается.

Теплоносители с жидкостным составом стоят дешевле, так как дольше отвечают на изменения температуры. Газовые работают быстрее и позволяют контролировать отопление максимально точно. Для того, чтобы четко регулировать температуру в большой по площади комнате, устанавливают газовые приборы. Для небольших помещений, где перепады температуры не принципиальны, устанавливаются жидкостные терморегуляторы.

Основные принципы установки

Приборы устанавливаются в два этапа. Сначала осуществляется монтаж запорного клапана на трубу, а затем к нему крепится непосредственно терморегулятор.

Запорный механизм монтируется в трубу батареи. Предварительно нужно перекрыть подачу воды. Затем производится врезка клапана. Поручить установку нужно квалифицированному специалисту, так как неправильный монтаж может привести к протечке воды и затоплению всей квартиры. Существуют определенные тонкости, которые знает только опытный специалист.

Для установки терморегулятора не надо обладать специальными навыками, так как термоголовка монтируется к клапану по инструкции. В настоящий момент есть приборы, уже имеющие заводские клапаны. Остается только докупить прибор и установить самостоятельно.

Особенности установки терморегулятора

Оптимальным вариантом является термоголовка с возможностью полного закрытия входящего потока. Это необходимо для дальнейшего обслуживания или отключения радиатора отопления.

Монтировать клапан нужно горизонтально, а не вверх. При подключении термоголовки сверху потоки горячего воздуха, которые устремляются вверх, будут влиять на работу камеры и постоянно расширять сильфон, это приведет к сбою в работе регулятора. Устанавливается терморегулятор горизонтально, с направлением в комнату, а не к стене.

Где купить терморегуляторы для батарей в Красноярске

В нашем интернет-магазине Вы можете купить ручной или автоматический терморегулятор хорошего качества по очень выгодной цене. В каталоге можно ознакомиться с ассортиментом, выбрать жидкостную термостатическую головку для современных радиаторов отопления. Для удобства представлены фото, технические характеристики приборов. Также в нашем магазине вы можете выгодно купить радиаторы отопления . С условиями доставки и оплаты Вы можете ознакомиться на сайте компании.

Читайте также:  Чем регулировать ножки стиралки

Если возникли вопросы, звоните по телефону, указанному на сайте. Менеджер поможет выбрать необходимые устройства, сделать заявку. При желании можно заказать монтаж радиаторов в Красноярске . Правильно организованная система отопления с возможностью регулировки температуры позволяет создать комфортные условия проживания и экономию денежных средств.

Что такое терморегулятор для батареи?

Какие преимущества установки терморегуляторы для батарей? Как создать домашний комфорт без лишних затрат по средствам терморегулятора? Узнайте, посмотрев видео:)

Источник

4 способа регулировки температуры теплого пола!

Регулировка температуры водяных теплых полов в помещении происходит двумя способами. Первый способ — это регулировка температуры теплоносителя, поступающего в контур теплого пола. Второй способ — это полное прекращение подачи теплоносителя, поступающего в контур теплого пола.

Для регулировки температуры помещения есть несколько способов. Начнем с самого простого. Самый простой способ — это использовать для монтажа системы теплого пола трубы с рабочей температурой до 90-95 градусов.

В этом случае в систему на подачу монтируют насос и обратный клапан, а на обратный коллектор теплого пола монтируют накладной термостат, через который и подключают насос. При этом в теплые полы идет теплоноситель с высокой температурой. По практике от 70-85 градусов.

При этом температура снимается полом и приходит охлажденная обратка. Как только температура обратки повышается вследствие прогрева помещения, то термостат отключает насос и прекращается подача теплоносителя. Система находиться в режиме ожидания.

Далее полы отдают тепло, температура падает, термостат включает насос и подает в систему новую порцию горячего теплоносителя. Как показала практика, это самая дешевая и надежная система регулировки температуры помещения.

При следующем способе регулировки температуры теплых полов мы в систему теплого пола на подачу монтируем насоса перед ним трехходовой вентиль или смесительный клапан. При таком способе, благодаря трех ходовому вентилю, происходит подмес прохладной обратки к горячей подаче. Происходит так сказать разбавление теплоносителя до нужной температуры.

С трехходовым вентилем регулировка температуры теплых полов происходит вручную или с помощью сервопривода. А смесительные клапаны регулируют температуру по заранее настроенному показателю. При этом трехходовой вентиль Вы можете крутить как хотите. А вот смесительный клапан необходимо настраивать более кропотливо.

Источник

Обзор термостатических регуляторов для систем отопления

Стандартную систему отопления гибкой не назовешь. Чтобы отрегулировать параметры работы батарей, придуманы различные приспособления.

Одним из таких устройств является термостатический клапан для радиаторов отопления. Его используют, чтобы регулировать теплоотдачу системы в зависимости от погодных условий.

Зачем нужен термостатический клапан?

Клапан решает две задачи: поддерживает температуру в помещении на комфортном уровне плюс экономит энергию.

Но чтобы он действительно справлялся с такими функциями, нужно понимать, в каких случаях прибор уместен и как его правильно устанавливать.

Если посреди зимы есть необходимость открывать окна, чтобы температура в комнате снизилась до приемлемого уровня, термостат однозначно нужен. Но он не поможет, когда батареи еле теплые, — с ним, возможно, станет еще холоднее.

Цена терморегулятора колеблется в диапазоне нескольких сотен рублей, поэтому переоборудование отопительной системы обойдется недорого. Но есть и дорогие модели.

Во втором случае лучше попробовать иначе отрегулировать температуру в помещении: изменить объем теплоносителя в каждом радиаторе, откорректировать работу котла (для большой площади), подобрать оптимальный циркуляционный насос или отрегулировать работу существующего.

Устройство и особенности работы прибора

Прибор состоит из двух основных рабочих элементов — клапана и термостатической головки. Первый чаще всего изготовлен из латуни, иногда никелированной, его нижняя часть блокирует трубу, а верх продолжает нажимной шток и пружину.

Клапаны бывают и бронзовыми (никелированными или хромированными), а также из нержавейки. Последние встречаются редко и стоят дорого.

Что происходит внутри клапана? В устройстве головки присутствует чувствительный элемент. Он располагается в полости с газом или жидкостью (сильфоне).

Нагревание провоцирует расширение в этой среде, элемент выталкивается вперед, давит на шток, пружину, а позже на клапан. Сила нажима определяет степень перекрытия.

Дополнительная часть термостата — заглушка или рукоятка со шкалой. На некоторых приборах есть электронные регуляторы.

Принцип действия устройства

Давайте подробно разберемся с принципом работы термостатических клапанов для батарей. Механика их действия схематично выглядит так: когда меняется температура теплоносителя или окружающей среды, на эти колебания реагирует газ или жидкость в головке.

Чувствительный элемент воздействует на нажимной шток, и тот уходит вверх или опускается вниз. При движении штока вниз клапан блокирует поток теплоносителя, что останавливает приток тепла, замедляет скорость циркуляции. В батарею не поступает тепло, поэтому температура в помещении не растет.

И здесь важно отличать термостатический клапан от регулировочного. Последним можно снижать пропускную способность клапана и так регулировать температуру батарей.

Читайте также:  Регулировка газового редуктора томасетто на газ 53

Разберем принцип работы термоклапана на примере. Так, устанавливаем прибор на рекомендуемую температуру в 20 градусов. Обычно это тройка или самая большая точка на шкале регулятора.

Что происходит внутри устройства? Если окружающий воздух нагревает головку до 21 градуса, т. е. повышает установленную температуру на 1 градус, она нажимает на шток, подача теплоносителя в батарею полностью блокируется клапаном.

Радиатор не нагревается, температура в помещении начинает снижаться. Когда температура окружения снизится до 19 градусов, термоклапан откроется, батарея начнет нагреваться.

Разбираемся с разновидностями приборов

По способу регулировки клапаны делятся на механические и автоматические. Первые требуют ручного поворота механизма сужения протока в трубах.

Автоматическим моделям не нужна ручная регулировка. Когда температура вокруг термостата снижается, они самостоятельно это фиксируют и корректируют поток теплоносителя.

Производители предлагают и разные конструкции термостатов:

Обычные для двухтрубных систем — простейшее устройство. Если нужна гидравлическая увязка радиаторов по одной ветке, рекомендуется добавить в схему запорно-регулирующий вентиль на подаче (обратка).

Со скрытой и открытой гидравлической надстройкой — в таких приборах есть муфта с внутренним штоком, поэтому возможна гидравлическая регулировка.

Для однотрубных, гравитационных систем — за счет увеличенного прохода пропускная способность у этих устройств повышена до 5,1 м3/час, поэтому они могут устанавливаться в безнапорные системы.

3-х-ходовые для схем с байпасом — умеют регулировать и распределять теплоноситель в связке с байпасом. Когда заданная температура достигает клапана, теплоноситель отправляется в байпас, когда она падает — байпас частично перекрывается.

В процентном соотношении термоклапанов для двухтрубок гораздо больше, чем для однотрубок, а последних в нашей стране около 80%.

Это связано с тем, что прибор и придуман изначально для первых, где теплоноситель распределяется по приборам принудительно под большим давлением. Преднастройка клапанами и предназначена для равномерного распределения давления по системе.

Клапаны для однотрубок есть лишь у некоторых производителей — Heiz, Danfoss, Heimeier, Oventrop.

В схемах с одной трубой нельзя использовать обычные «двухтрубные» термостаты: у них меньшая пропускная способность, они способны работать только при большой разнице давлений на подаче и обратке, поэтому будет риск перенаправления теплоносителя в байпас.

Внешне «однотрубные» клапаны больше по размерам.

Также термостатические клапаны отличаются по форме. Бывают прямыми, угловыми или входят в гарнитуры с перемычками для труб. Прямые уместны на обычных батареях. Угловые нужны в схемах с нижней подводкой труб, когда СО частично замаскирована под полом.

Отдельная разновидность термоклапанов — электронные. Они имеют более широкий функционал, чем обычные. С их помощью можно выставлять разную температуру в помещении на каждый день недели и даже почасово.

Электронные термостаты обеспечивают существенную экономию расхода теплоносителя. Если с 8 утра до 6 вечера в квартире или доме никого нет, прибор будет исправно поддерживать минимальную температуру. А к приходу хозяев нагреет помещения до комфортного уровня.

В продаже есть и клапаны с антивандальным кожухом. Они надежно защищены от неквалифицированного вмешательства и подходят для установки как в доме с маленькими детьми, так и в садиках, школах.

Источник

Терморегулятор нагрева непрерывного действия

Терморегулятор нагрева непрерывного действия (далее — «терморегулятор») предназначен для применения в системах регулирования температуры, использующих электрические нагреватели с питанием от однофазной сети переменного тока

220-230В, 50Гц, таких как: дистилляторы, инкубаторы, системы электроотопления, и т.д. Регулирующим элементом терморегулятора является симистор с управляемой фазой отпирания, что обеспечивает плавное и непрерывное (в отличие от регуляторов с релейным выходом) изменение мощности подключенного нагревательного элемента как в автоматическом, так и в ручном режиме.

Схема фазового управления симистором реализована на китайском клоне arduino LGT8F328P-LQFP32 MiniEVB. Вместо оптопары РС817 можно использовать РС814, тогда диодный мост VD2 можно заменить перемычками. В авторском варианте схема запитана от импульсного маломощного блока питания 12V, 1,25A (MN15-12).

Для кулера симистора мной использован радиатор от УНЧ бобинного магнитофона «Юпитер 203». Разводка платы выполнена для него. Можно использовать другой алюминиевый радиатор с размерами 45*45 мм., сделав в нем соответствующие крепежные отверстия. При управлении нагрузкой до 1 кВт радиатор практически холодный, для бОльших нагрузок применен вентилятор 12V 45*45 или 40*40, закрепленный на радиаторе.

Датчик температуры использован цифровой DS18S20, в герметичной гильзе, длина кабеля 1 м.

При правильной сборке и заливке соответствующей прошивки, схема в наладке не нуждается.

Испытания проводил нагреванием воды в старой кастрюле на электрической плитке:

Корпус использовал фабричный, NM9, плата разведена под него.

Основные технические характеристики терморегулятора:

  • диапазон температур регулируемой среды: 0-120 ºC;
  • сеть питания: однофазная,

220-230В, 50Гц;

  • максимальная мощность подключаемого нагревательного элемента 3 кВт;
  • точность измерения температуры датчиком +/- 0,5ºC;
  • точность поддержания температуры в автоматическом режиме — +/- 0,1ºC.
  • Описание работы устройства.

    Терморегулятор имеет два режима работы — ручной и автоматический.

    В ручном режиме оператор может регулировать мощность нагревательного элемента (OP — » output point») вращением ручки энкодера в направлении по часовой стрелке (увеличение) или против часовой стрелки (уменьшение мощности). Диапазон регулирования мощности — 0-100% с шагом в ручном режиме 1%.

    В автоматическом режиме оператор может задавать уставку по температуре (SP — «set point «) в градусах Цельсия с помощью энкодера. Установленное задание будет поддерживаться автоматически регулятором, который реализован программно на микроконтроллере. В зависимости от отклонения текущей, измеренной датчиком, температуры среды (PV — » point value») от задания SP регулятор, по специальному алгоритму, увеличивает или уменьшает мощность нагревательного элемента OP для устранения отклонения.

    Органы управления и отображения.

    Дисплей терморегулятора — жидкокристаллический, с светодиодной подсветкой. Имеет две строки по 16 символов. В рабочих режимах на дисплей выводятся текущие значения измеренной температуры (PV ) и задания по температуре (SP) в градусах Цельсия, а также выходная мощность (OP) в процентах от максимума. В ручном режиме у отметки OP подсвечивается символ «*». В режиме инженерного меню на дисплей выводятся наименования и текущие значения параметров настройки ПИД регулятора с возможностью их изменения.

    Энкодер предназначен для изменения параметров путем вращения ручки по часовой стрелке (увеличение) или против часовой стрелки (уменьшение значения). В ручном режиме оператору предоставляется возможность изменять выходную мощность (OP), в автоматическом — задание по температуре (SP). Нажатием на вал энкодера вниз в осевом направлении сохраняется в память микроконтроллера значение SP. В режиме инженерного меню есть возможность выбирать , изменять и сохранять в память параметры настройки ПИД регулятора: Kr, Ti, Td, OP0.

    Переключатель режимов представляет собой тумблер с двумя положениями «РУЧ» и «АВТ», который переводит регулятор в ручной или автоматический режим соответственно.

    Блокатор энкодера представляет собой тумблер с двумя положениями, который в положении «LOCK» блокирует реакцию регулятора на вращение ручки энкодера. Это является средством защиты от случайного изменения параметров.

    Кнопка «RES» — сброс микроконтроллера. Ее нажатие инициирует перезагрузку и перезапуск вычислительной системы.

    Инженерное меню.

    Переход в инженерное меню обеспечивается нажатием и удержанием в нажатом состоянии вала (кнопки) энкодера при перезагрузке программы микроконтроллера до появления надписи «SETUP» в верхней строке дисплея . Вращением ручки выбирается параметр (Kr, Ti, Td, OP0), значение которого нужно изменить. Однократное нажатие кнопки энкодера на выбранном параметре переводит его в режим изменения. Далее, вращением ручки по часовой стрелке (увеличение) или против часовой стрелки (уменьшение) выставляется необходимое значение параметра и нажатием на кнопку энкодера сохраняется в память.

    Порядок работы.

    Для начала работы , подключите термодатчик к регулятору. Обеспечьте надежный контакт корпуса датчика со средой, температура которой регулируется. В ручном режиме возможна работа без подключения датчика.

    Подключите вилку нагревательного элемента к розетке терморегулятора.

    Включите вилку терморегулятора в розетку сети переменного тока 220 -230 В, 50Гц.

    С помощью переключателя режимов выберите желаемый режим работы (ручной или автоматический). С помощью ручки энкодера выставьте необходимое значение OP или SP. При необходимости, включите блокировку энкодера и сохраните текущее значение SP в память.

    Рекомендуемый алгоритм работы следующий:

    1. Включите регулятор в ручном режиме.
    2. Регулируя выходную мощность OP, достигните желаемой температуры Вашего процесса.
    3. Переключите режим в «АВТ».
    4. При необходимости, скорректируйте значение SP.
    5. Включите блокатор энкодера.
    6. Нажатием на кнопку энкодера, сохраните текущее значение SP в память микроконтроллера.

    Настройка параметров ПИД регулятора

    Регулировка мощности нагрева в автоматическом режиме выполняется по следующей формуле (формула обще — принципиальная, не учитывает особенности программной числовой реализации):

    Tk — текущая температура среды, измеренная датчиком,

    t — текущее время,

    k — номер итерации.

    По умолчанию параметры имеют следующие значения:

    Установка Ti=0 или Td=0 выключает интегральную или дифференциальную составляющую расчета соответственно.

    Kr — общий коэффициент передачи регулятора. Его увеличение приводит к уменьшению статической ошибки регулирования, то есть усиливает реакцию регулятора на отклонение температуры от уставки. Kr отвечает за мгновенную реакцию регулятора на изменение регулируемого параметра. Слишком большое значение Kr может привести к неустойчивой работе регулятора, возникновению автоколебаний.

    Ti — время интегрирования. Использование интегральной составляющей позволяет сделать статическую ошибку нулевой, то есть повысить точность регулирования. Если Kr определяет мгновенную реакцию регулятора на параметр регулирования, то отношение Kr/Ti — определяет инерционность регулятора. Чем больше значение Ti, тем медленнее регулятор «дотягивает» параметр до значения уставки SP. Для отсутствии колебаний параметра при регулировании инерционность регулятора (Ti) не должна быть меньше инерционности объекта регулирования. Малое значение Ti может привести к неустойчивой работе регулятора, возникновению автоколебаний.

    Td — время дифференцирования. Дифференциальная составляющая обеспечивает мгновенную реакцию регулятора на изменение отклонения Ek. Дифференциальное регулирование еще называют «упреждающим». Эта составляющая усиливает отработку регулятором быстрых коротких бросков параметра. Слишком большое значение Td может привести к неустойчивой работе регулятора, возникновению автоколебаний.

    OP0 — начальная точка регулятора. Это значение мощности выставляется сразу после включения или перезагрузки.

    Источник

    Adblock
    detector