Меню

Регулировка яркости свечения индикатора



Регулирование яркости свечения индикаторов в полиграфическом оборудовании

Особенностью использования полупроводникового индикатора, как и любого активного (светоизлучающего) индикатора, является зависимость качества воспроизведения информации от уровня яркости внешней освещенности. В частности, в помещениях с рассеянным спокойным освещением индикатор в номинальных режимах работы даст дискомфорт считывания информации из-за чрезвычайно высокого яркостного контраста. В помещениях же с высокими уровнями внешней освещенности от 10 ООО до 100 000 лк яркостного контраста для уверенного считывания информации даже при максимуме светоотдачи без применения специальных мер будет недостаточно. Для устройств, работающих в широком диапазоне внешней освещенности, необходимо решать обе эти задачи.

Снижение яркостного контраста при работе индикатора в помещениях с низким уровнем внешней освещенности достигается путем регулирования (уменьшения) яркости свечения индикаторов. Это регулирование может быть осуществлено различными способами. В частности, в условиях ровного яркого освещения, например, в вычислительных центрах, допустим вариант регулирования яркости за счет изменения напряжения питания полупроводниковых индикаторов, а следовательно, и амплитуды проходящего через светодиоды тока. Регулирующим элементом может служить переменный резистор, вынесенный на лицевую панель прибора. Этот резистор является элементом делителя напряжения в блоке питания, осуществляющего регулировку выходного напряжения блока, используемого для питания полупроводникового индикатора. Вариант прост в исполнении, и используется в помещениях с достаточно ровным ярким освещением, не требующим регулирования яркости полупроводникового индикатора до минимума. Это объясняется тем, что при малых значениях протекающего через светящийся элемент тока /пр наблюдается незначительный разброс яркости его свечения Lv (рис. 1.64). При снижении до определенного минимума протекающего через светодиоды тока разброс яркости свечения полупроводникового индикатора значительно увеличивается. При невысоких уровнях яркостей, т. е. при работе в ночное время зрительное восприятие неравномерности свечения будет усугубляться тем, что в этих условиях чувствительность глаза выше, поэтому и различная яркость проявляется сильнее. Следовательно, регулирование яркости свечения индикаторов методом изменения напряжения на нижних пределах регулирования создаёт дискомфорт при считывании информации из-за разнояркости свечения светодиодов. Необходимо учесть, что конструкция полупроводникового индикатора не позволяет их использовать без светофильтров, так как светлая пластмасса рассеивателя светопроводов точек и сегментов полупроводникового индикатора на чёрном фоне его корпуса даже в выключенном состоянии выделяется достаточно контрастно.

Рис. 1.64. Зависимость яркости свечения светодиодов от прямого тока.

Высокий контраст элементов индикатора при определенных условиях освещенности или дефицита времени могут вызвать пропуски и ошибки при считывании информации. Светофильтры же, обеспечивающие цветовой и яркостный контрасты индицируемой информации, снижают яркость свечения на 15%…20% и более в зависимости от типа светофильтра. Таким образом, с одной стороны, для обеспечения комфортности считывания информации в затемненном помещении необходимо снижение тока через светодиоды цифрового индикатора до значения, снимающего слепящее действие наиболее ярких элементов, а с другой – явление разброса яркости свечения с одновременным использованием светофильтров приводит к полной потере светимости части светодиодов, имеющих более низкие светоизлучающие характеристики. Поэтому способ регулирования яркости свечения индикаторов снижением напряжения питания, приемлемый для приборов, размещаемых в помещениях с постоянным средним и ярким уровнем внешней освещенности, неприемлем для устройств отображения информации, размещаемых в помещениях и на объектах с широким диапазоном яркостей внешнего освещения. Другим вариантом регулирования яркости свечения индикаторов, устраняющим указанный недостаток, является метод широтно-импульсного регулирования яркости свечения цифровых полупроводниковых индикаторов. Широтно-импульсный метод (ТТТИМ) основан на сокращении времени протекания тока через светодиоды индикаторов. При этом снижается значение среднего прямого тока через светодиоды и, естественно, снижается яркость их свечения. На рис. 1.65 представлена структурная схема широтно-импульсного метода регулирования яркости свечения цифровых индикаторов. Функциональный элемент 1 представляет собой генератор широтно-модулированных импульсов. Функциональный элемент 2 представляет собой дешифратор, преобразующий двоично-десятичный код на его информационных входах (1-2-4-8) в семиразрядный позиционный код на его выходах (A-B-C-D- E-F-G). Функциональный элемент 3 представляет собой семисегментный индикатор. Кроме информационных входов, дешифратор имеет вход, наличие напряжения на котором обеспечивает свечение сразу всех сегментов индикатора и на который подается ШИМ-напряжение для управления свечением индикатора. Дешифраторы имеют и вход гашения, при подаче сигнала на который на выходах AG дешифраторов появляется логический уровень, обеспечивающий гашение светодиодов. На рис. 1.66 представлена одна из возможных схем функционального элемента 1 – генератора широтно-модулированных импульсов.

Он представляет собою мультивибратор, работающий в автоколебательном режиме с изменяющейся длительностью выходного импульса. Длительность выходного импульса пропорциональна сопротивлению резистора //рС,.Ярк· Полупроводниковые индикаторы являются токовыми приборами, поэтому для нормального их функционирования необходимо стабилизировать прямой ток через каждый элемент. Эту задачу в схемах управления индикаторами выполняют формирователи тока. Указанный метод заключается в регулировании светоотдачи полупроводникового материала индикатора изменением среднего прямого тока через сегмент. Поскольку наиболее распространённым формирователем тока бывает пассивный элемент (резистор), то во избежание значительного изменения яркости необходимо высокая степень стабилизации напряжения питания источника тока. Необходимо отметить, что при индикации различных значений цифровых параметров суммарный ток потребления всего индикатора будет изменяться в широких пределах, а поэтому напряжение питания при изменениях тока нагрузки во время работы индикаторов должно быть стабилизировано во всём диапазоне токов потребления от 0 до /макс·

Читайте также:  Как отрегулировать ход часов электроника

Снижение среднего прямого тока через сегменты вызывает снижение светоотдачи полупроводникового материала индикатора, т. е. регулирования яркости индикатора. Схемы регулирования яркости индикаторов с использованием генераторов широтно-модулированных импульсов могут быть различными. Однако любые варианты такой схемы регулирования яркости могут использоваться только при ограниченном числе индикаторов, так как одновременное включение- выключение большого числа индикаторов вызывает значительные изменения тока источника питания.

Борьба с таким явлением в микросхемной части вызывает значительные трудности в проектировании источников питания, проводного или печатного монтажа. Регулировка яркости свечения индикаторов аналоговым методом устраняет указанные сложности. Схема аналогового регулятора приведена на рис. 1.67. Ее целесообразно применять в устройствах, в которых другие методы борьбы с трудностями при ШИМ-регулировании по тем или иным причинам не принесли желаемого результата. Следует помнить, что аналоговый метод регулировки яркости менее экономичен, чем ШИМ, так как даже при полностью погашенных индикаторах значительная мощность рассеивается на регулирующем транзисторе стабилизатора и на резисторном делителе напряжения.

Источник: Беляев В. П., Шуляк Р. И., «Электронные устройства полиграфического оборудования», Белорусский государственный Технологический университет, Минск, 2011 г.

Источник

Автоматическая регулировка яркости LED часов

Недавно купил сетевые светодиодные часы VST-731. Часы выгодно отличает от других моделей функциональность, большой размер символов индикатора и яркое свечение этих символов. К сожалению, заявленного на сайте интернет-магазина программного уменьшения яркости в ночное время (22-00 – 7-00) в этой модели часов не оказалось. В связи с отсутствием программного управления яркостью индикаторов, одно из достоинств часов – яркое свечение символов является и их недостатком: цифры часов слишком ярко светятся в темноте, создавая определенный дискомфорт ночью.

Предлагаемая схема автоматической регулировки яркости индикаторов часов позволяет автоматически устанавливать яркость индикатора в зависимости от уровня освещенности того места, где расположены часы.

Для построения схемы автоматической регулировки яркости разберемся с цепями питания узлов часов VST-731. Ниже показан фрагмент электрической схемы, схожий со схемой этих часов — схему VST-731 мне найти не удалось.

Из схемы видно, что питание разных групп сегментов индикаторов дисплея организовано от двух однополупериодных выпрямителей, собранных на диодах D1, D2. Резисторы R2, R4 задают ток через сегменты индикаторов, а значит — яркость свечения символов.

Принцип работы автоматической регулировки яркости индикатора для часов VST-731 или похожих по построению цепей питания иллюстрирует схема:

Транзистор T1 в этой схеме выполняет функции регулирующего элемента и выпрямительного диода. Элементы D1, C1 – цепь формирования постоянного напряжения. В случае, если все узлы часов подключены к одному источнику постоянного напряжения, то в этой цепи нет необходимости: цепочку на резисторах R1 – R3, задающую ток базы транзистора T1, можно подключить к +UCC. С увеличением освещенности сопротивление фоторезистора R1 уменьшается, при этом увеличивается ток через транзистор T1, что приводит к увеличению яркости свечения включенных управляемыми ключами микросхемы сегментов индикаторов. Резистор R2, сопротивление которого на несколько порядков ниже сопротивления фоторезистора R1 в темноте, определяет яркость свечения светодиодов в темноте. На транзисторе T2 собран второй канал управления яркостью по аналогии с первым. В нашем случае второй канал необходим, поскольку, как было отмечено выше, питание узлов в часах осуществляется от двух источников постоянного напряжения.

Схема автоматической регулировки яркости индикаторов для часов VST-731 (выделена цветом) выглядит так:

Навесной монтаж элементов схемы (кроме фоторезистора) можно выполнить на отдельной плате, например, — кусочке макетки и поместить эту плату в корпус часов – пустого места там хватает. Фоторезистор 1R1 необходимо закрепить на лицевой панели часов, предварительно просверлив два отверстия под его выводы. Я приклеил фоторезистор поверх товарного знака ® в надписи VST® на лицевой панели, но это уже дело вкуса: главное – сенсор должен располагаться в плоскости дисплея часов. Перед подключением платы регулировки яркости к плате управления часов не забудьте разорвать старые цепи питания сегментов индикатора (диоды D1, D2), которые упоминались выше.

Источник

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Читайте также:  Регулировка клапанов хонда срв 1999 года

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Содержание статьи

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Читайте также:  Регулировка теплового зазора лабораторная работа

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Подробнее про широтно-импульсную модуляцию:

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Устройство диммируемых светодиодных ламп:

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Источник

Adblock
detector