Меню

Регулировка выходного напряжения и тока для зарядки акб



Простое универсальное ЗУ для любых аккумуляторов

В статье описывается изготовление несложного устройства для безопасной зарядки практически любых аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора и автоматическое прекращение зарядки при достижении номинального напряжения.

При помощи такого зарядного устройства (ЗУ) можно заряжать аккумуляторы разных типов, с номинальным напряжением 1,2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3,7. 3,9 вольт), а также 9 и 12 – вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от его номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается обычно на его корпусе. Например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального контроля в процессе зарядки при помощи небольшого стрелочного прибора.

Принципиальная схема ЗУ приведена на рис.1 (кликните для увеличения):

Конструкция и детали.

Схема может питаться от любого малогабаритного трансформатора с переменным напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1, ёмкость которого должна быть 470 мкФ или более.

Диоды выпрямительного моста – любые выпрямительные, на ток от 0,5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – типа КТ815, КТ817, КТ805 c любой буквой или импортные аналоги (например — PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1,5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие теплоотводы. Светодиод может быть любой маломощный, например типа АЛ307.

Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КРЕН12А (цоколевка выводов указана на схеме в скобках).

Вместо плавной регулировки выходного напряжения удобнее использовать дискретный переключатель на несколько положений, например: 1,2В – 2,4В – 3,6В – 3,9В – 9В – 12В. Нужные значения напряжений устанавливаются при настройке, подбором резисторов R9 … R14, номиналы их лежат в пределах от десятков Ом до нескольких кОм.

Ток заряда устанавливается резистором Р1, его можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы.

По окончании заряда ток на выходе ЗУ падает практически до нуля, светодиод гаснет и показания миллиамперметра также стремятся к нулю.

К клеммам J1 и J2 вместо аккумулятора подключают сопротивление 100 Ом (мощностью не менее 5 Вт иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее «1,2В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше , то есть около 1,4В.

Затем переключаем S1 в следующее положение — «2,4В» и подбором резистора R10 выставляем на выходе около 2,8В. И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1.

В качестве миллиамперметра можно применить, например индикатор типа «М476» с параллельно включенным шунтом на 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0,5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

Возможная конструкция и внешний вид зарядного устройства с органами управления показаны на фото ниже:

Источник

Зарядное Устройство для АКБ Авто на Двух Тиристорах

Самостоятельное изготовление зарядного устройства для свинцово-кислотных автомобильных аккумуляторов с точки зрения схемотехники не составляет особого труда. Даже при наличии различных регулировок, таких как установка зарядного тока, например, и автоматики отключения, сложность схемы не будет превышать средний уровень.

Читайте также:  Регулировка фар меган 2 фаза 1

Вопрос здесь в другом — комплектующие для зарядного устройства. Если говорить о схемах, где в качестве преобразования сетевого напряжения выступает трансформатор, то именно его наличие и определяет целесообразность построения схемы. Потому как прежде чем специально покупать трансформатор, много раз подумаешь, глядя на нынешние « конские » ценники.

В этой статье я хочу предложить Вашему вниманию простейшую зарядку на двух тиристорах. Через один из них непосредственно осуществляется зарядка аккумулятора, а другой служит для отключения АКБ по её завершению. Ну и сразу о самой дорогой « запчасти » — о трансформаторе. Именно он в схеме определяет зарядный ток. Здесь использован силовой понижающий трансформатор с двумя вторичными обмотками по 15 В (отвод от середины). При наличии такого трансформатора, или хотя-бы железа для его изготовления можно изготовить простое и надёжное зарядное устройство, схема которого показана ниже.

Трансформатор, как я уже написал выше, содержит две вторичных обмотки по 15 В (или одну на 30 В с отводом от середины). Его мощность в данной схеме и будет определять зарядный ток аккумулятора. Выпрямляется напряжение со вторичных обмоток двумя диодами — VD1 и VD2 . Глядя на этот выпрямитель сразу бросается в глаза отсутствие сглаживающего конденсатора. Но на самом деле здесь нет никакой ошибки, потому как на этом основан весь принцип работы этого зарядного устройства. Давайте разберёмся почему.

Сначала рассмотрим цепь на тиристоре VS1 , через который и происходит непосредственно заряд аккумуляторной батареи. На аноде тиристора VS1 действует пульсирующее напряжение частотой 100 Гц по амплитуде напряжение это изменяется от нуля до 20 В . Короче говоря, это положительные полуволны со вторичной обмотки трансформатора Т1 . Для перехода тиристора в открытое состояние включена цепочка R1VD4 между его анодом и управляющим электродом. Ток в этой цепи имеет достаточное значение (около 15 мА ) для его открытия. При этом, когда тиристор находится в активном режиме работы, то горит светодиод VD4 . Между катодом тиристора и общим проводом, который соединён со средней точкой вторичной обмотки трансформатора Т1 , подключается заряжаемая аккумуляторная батарея. Так происходит заряд аккумулятора.

А теперь давайте рассмотрим какое условие нужно создать для закрытия тиристора и прекращения зарядки. Вариантов два: разорвать саму цепь заряда аккумулятора или снять управляющий ток. Так вот при снятии управляющего тока, тиристор всё равно останется в открытом состоянии (свойство тиристора), пока протекает достаточный ток (ток удержания) в цепи между его анодом и катодом. Но в этой схеме в цепи действует пульсирующее напряжение, и именно когда напряжение равно нулю происходит закрытие тиристора, потому как прекращается прохождение тока и тиристор больше не чего не удерживает. Этого бы не произошло при наличии сглаживающей ёмкости в выпрямителе т.к. напряжение всегда было бы отлично от нуля.

Теперь к цепи на VS2 , которая служит для отключения АКБ (закрытию тиристора VS1 ) по завершению заряда. Принцип основан на разнице напряжений АКБ в разряженном и заряженном состоянии. Напряжение работы стабилитрона VD3 (12 В) выставляется с помощью потенциометра R2 . Значение напряжения полного заряда АКБ должно соответствовать началу перехода VD3 в активное состояние, т.е. в состояние, когда через него будет протекать ток. При этом создастся условие для открытия тиристора VS2 . Об открытии тиристора VS2 будет сигнализировать светодиод VD5 зелёного цвета « завершение заряда ». При этом ток в цепи управляющего электрода VS1 станет уже недостаточным для его открытия, и он закроется в момент нулевого напряжения.

Печатная плата показана на рисунке выше. Вся настройка устройства сводится к установке порога срабатывания цепи тиристора VS2 подстроечным резистором R2 . Делают это на полностью заряженном АКБ . Порог открытия определяется свечением светодиода VD5 , в то время, когда VD4 наоборот тухнет.

Тиристор VS1 должен быть закреплён на теплоотводе. Светодиоды VD4 и VD5 любые на номинальный ток 10 мА красного и зеленого цвета соответственно.

Источник

Поделки своими руками для автолюбителей

Простое, тиристорное зарядное устройство для авто АКБ

Всем привет, ранее я показывал схему мощного, тиристорного, зарядного устройства для автомобильных аккумуляторов, а простая схема, хотя и обладала высокой надёжностью, но была лишена систем защит, наподобие защиты от обратной полярности и короткого замыкания.

Читайте также:  Как правильно отрегулировать колдун ваз 2114

Сегодня речь пойдет о тиристорном, зарядном устройстве, но в ней уже имеются вышеупомянутые системы и защиты, таким образом представленная схема практически не убиваемая, одним словом надежная, как автомат Калашникова.

Вообще, зарядные устройства бывают линейными и импульсными.

Линейные, как правило, обладают малым кпд, поэтому силовой элемент — транзистор нуждается в большом радиаторе и дополнительном, активном охлаждении.

Если нужно зарядное устройство на большой ток, либо пуско-зарядное, то нужно смотреть в сторону импульсных схем. Импульсные, зарядные устройства можно разделить на 2 группы, схемы с шим-регулировкой тока заряда и фаза-импульсным способом.

Первый вариант, конечно же хорош, там регулировка мощности производится шим-сигналом, чем больше длительность импульсов, которые управляют силовым ключом, тем больше ток и наоборот.

Но подобные схемы сложны, поскольку в них должен иметься шим-контроллер, узел управления силовыми ключами и мощная выходная часть, также немаловажным фактором является стоимость комплектующих, хорошие, оригинальные, силовые транзисторы стоят дорого, то же самое можно сказать о силовых диодах, которые имеются в таких источниках питания.

Чем мощнее схема, тем больше и затраты, а если планируете собрать пуско-зарядное устройство с большим выходным током, то она здорово ударит по карману, взамен такие схемы могут дать возможность полной регулировки или стабилизации, как выходного напряжения, так и тока, что даст возможность построить универсальные зарядки абсолютно для любых аккумуляторов.

КПД у импульсных схем высокая, за счёт ключевого режима работы силового ключа, он либо открыт, либо закрыт.

Фаза-импульсные регуляторы также являются разновидностью импульсных регуляторов, тот же принцип только управление силового элемента производится низшим сигналом, а путем изменения частоты управляющих импульсов. Такой способ регулировки применим к тиристорам и симисторам, метод регулировки мощности заключается в обрезании начального, синусоидального сигнала.

Фаза-импульсные регуляторы мощности, обладают предельно высокой надежностью, если всё сделано правильно, тут нет шим контроллера, на его месте простой, релаксационный генератор способный вырабатывать управляющие импульсы с регулировкой частоты.

Такие генераторы очень просты и могут быть собраны из подручных компонентов, достоинством таких зарядных устройств являются высокое кпд и то, что они «резиновые», поставили более мощный трансформатор, тиристоры и ВСЁ, мощность схемы может быть любой.

Теперь, что касается нашей схемы…

Это схема промышленного, зарядного устройства Барс-8а,

ничего я не менял, только перевёл схему на импортную, элементную базу, с вашего разрешения будем рассматривать именно её.

Обратите внимание на толстые линии, это силовые, сильноточные цепи, провод для этих линий нужен с большим сечением в зависимости от расчетного тока. В схеме допускается разброс номиналов компонентов на 20%, на работу это особо не повлияет.

Несмотря на то, что вся вторичная цепь низковольтная, напряжение там безопасное. Питается зарядка от сетевого напряжения, поэтому соблюдайте бдительность и правила безопасности при работе с сетевым напряжением.

Первый запуск схемы, осуществляется через страховочную, сетевую лампу накаливания на 40-60 ватт, которая подключается на место предохранителя.

Схема управления собрана на компактной, печатной плате, её можете скачать в конце статьи.

В схеме имеем простой, релаксационный генератор, построенный на двух транзисторах, ещё один транзистор является усилительным. Помимо этих, в схеме имеем ещё два транзистора.

Давайте разберёмся, как это работает…

При подключении устройства в сети ничего не произойдёт, схема не будет работать пока на выходе не подключим заряжаемый аккумулятор. При подключении аккумулятора масса или минус от него поступит на эмиттер первого транзистора, а на базу через светодиод и ограничительный резистор, поступит положительное напряжение, что приведёт к отпиранию транзистора.

В этом случае напряжение появится и на делителе, который состоит из переменного и постоянного резистора, вращением переменного резистора у нас появляется возможность плавно открывать или закрывать второй транзистор, чем сильнее приоткрыт этот транзистор, тем быстрее будет заряжаться конденсатор, именно от скорости заряда этого конденсатора зависит частота импульсов вырабатываемых релаксационным генератором.

Читайте также:  Форд транзит регулировать клапан

Таким образом вращение переменного резистора приводит к изменению частоты импульсов, эти импульсы в свою очередь через диоды поступают на управляющие выводы мощных, силовых тиристоров.

В данной части схемы построен мостовой выпрямитель,

только регулируемый, так как пара диодов выпрямителя заменены тиристорами, остальные два диода обычные, выпрямительные.

Выходное напряжение с этого зарядного устройства — пульсирующие, одни говорят, что это даже хорошо для аккумуляторов и способствует их восстановлению. Коротких замыканий устройство не боится, сугубо по той причине, что без аккумулятора оно не будет включаться вообще, если же аккумулятор включен неправильно, то есть «переполюсовка», то светодиод окажется подключенной анодом к массе и питание попросту не поступит на схему, если всё подключено правильно светодиод светится.

Заработает ли устройство, если заряжаемый аккумулятор сильно разряжен? Заработает, для запуска схемы достаточно и 6 вольт, так что дохлый аккумулятор не помеха.

Теперь о комплектующих.

Все диоды примененные в схеме выбираются с током 1-1.5 ампера, кроме конечно же силовых, но о них поговорим попозже. Первые 4 транзистора можно любые, маломощные с напряжением коллектор-эмиттер желательно от 40 вольт, хотя первый транзистор я поставил более мощный, но в этом нет необходимости.

Управляющий транзистор в ходе работы будет нагреваться, поэтому его необходимо установить на небольшой теплоотвод.

Указанный резистор, необходим с мощностью 1-2 ватта, в ходе работы будет нагреваться, у меня стоит 2-х ватный.

Силовая часть состоит из 2-х диодов и 2-х тиристоров, тут я отдал предпочтение советским компонентам.

Диоды, вот такие ДЧ135-50, в моём случае военная приёмка с индексом 2Ч, идеальный вариант для этих целей, они на 50 ампер.

Корпус у этих диодов отлично отводит тепло и по идее они могут работать на более больших токах.

Тиристоры 2Т142-80 на 80 ампер, также военная приёмка. Напряжение диодов и тиристоров в принципе можно от 40 вольт, но у меня стоят с многократным запасом, тиристоры на 700 вольт, диоды на 600 и в этом нет необходимости, просто такие компоненты были в наличии.

Как вы могли заметить несмотря на компактные размеры и тиристоры, и диоды, очень мощные — это довольно необычно, поскольку мощные, советские радиокомпоненты, как правило, очень громоздкие.

Введите электронную почту и получайте письма с новыми поделками.

По поводу охлаждения.

Диоды должны быть установлены на массивный радиатор, а вот для тиристоров радиатор можно поменьше, так как они работают в импульсном режиме, хотя всё зависит от того на какой ток рассчитана ваша схема и какой в целом трансформатор.

Да, и еще не забываем мазать термопасту.

Резисторы на 100 Ом установлены не на плате управления, а припаяны непосредственно на тиристорах.

Силовой трансформатор необходим с напряжением вторичной обмотке не менее 18-20 вольт, этого хватит для зарядки любых автомобильных 12-вольтовых аккумуляторов.

Ток обмотки уже будет зависеть от ваших нужд, 6 ампер хватит для зарядки аккумуляторов с номинальной емкостью 60 ампер-часов, но схема с таким раскладом может обеспечить выходной ток в десятки ампер и всё зависит от трансформатора и силового выпрямителя. Получить можно и сотню ампер, и даже больше, всё зависит от вашей фантазии.

Регулировка зарядного тока очень плавная.

По поводу недостатков, то что схема надежная вы поняли, но она не имеет стабилизации, как и большинство схем на основе тиристора, то есть скачки и перепады сетевого напряжения приведут к увеличению или уменьшению выходного напряжения, поэтому устройство нуждается в некотором зрительном контроле.

Амперметр и вольтметр, вам покажут значение тока заряда и напряжения на аккумуляторе, и определиться нужно именно исходя из показаний приборов, например — если ток заряда 0, но напряжение на аккумуляторе меньше того значения, которое должно быть в полностью заряженном состоянии, то увеличиваем ток вращением регулятора.

Безусловно я согласен, что это неудобно, но поверьте на практике вам не придётся очень часто регулировать ток, если вы заряжаете один и тот же аккумулятор.

Источник

Adblock
detector