Меню

Регулировка токовой защиты в блоке питания



Регулируемый импульсный блок питания с защитами

Импульсный регулируемый блок питания на микросхеме TL7555 , схема которого на рисунке вверху, может питать различную аппаратуру и заряжать автомобильные аккумуляторы.
Из защит присутствуют: от превышения температуры ключевого транзистора; от короткого замыкания; от повышенного и пониженного напряжения нагрузки; от импульсных перенапряжений в сети питания. Выходное напряжение регулируется в пределах от 6 до 24 вольт, максимальный выходной ток 6 ампер. Питание электросети от 140 до 240 вольт. Питание устройства бестрансформаторное, с ограничением пускового тока. Первичные и вторичные цепи электронной схемы выполнены гальванически раздельными.
На микросхеме DA1 ( TL7555 ) выполнен генератор импульсов, в её состав входят два компаратора, внутренний триггер, выходной усилитель для повышения нагрузочной способности и ключевой разрядный транзистор с открытым коллектором. Частота генерации задается внешней RC-цепочкой. Компараторы переключают внутренний триггер при достижении порогового напряжения на конденсаторе С1 1/3 и 2/3 U пит. Вход управления (вывод 5) DA1 используется для изменения режима генерации импульсов, что обеспечивает стабилизацию выходного напряжения. Выходной ток устройства зависит от скважности импульсов генератора, которая устанавливается подстроечным резистором R2. В левом по схеме положении движка резистора время заряда конденсатора С1 минимально, т.е. импульс, поступающий на ключевой транзистор VT1 с выхода DA1, очень короткий, и средний ток в нагрузке минимальный. В правом положении движка R2 длительность импульса максимальна, как и выходной ток. Для защиты транзистора от пробоя импульсными напряжениями, возникающими во время преобразования, транзистор и трансформатор «обвязаны» демпфирующими цепочками С4-C5-R12-VD4 и C6-R13. Защита транзистора VT1 от перегрузки по току выполнена на параллельном стабилизаторе DA2. Повышение напряжения на резисторе R11 в цепи истока VT1 при увеличении тока через него приводит к открыванию DA2 и шунтированию затвора VT1 В результате, VT1 закрывается, и ток через него падает. Цепи питания инвертора выполнены на импульсном диодном мосте VD6 и конденсаторе фильтра С7. Заряд конденсатора фильтра в начальный момент ограничен термистором Rt2, что защищает диодный мост от повреждения критическими токами. Импульсный ток через трансформатор и полевой транзистор ограничен резистором R16, сопротивление которого компенсирует разброс параметров трансформаторов. Большую роль в получении максимальной мощности от устройства играет частота преобразования инвертора. При ее увеличении в 10 раз допустимая мощность трансформатора (без изменения феррита и обмоток) возрастает почти в 4 раза. В самодельных инверторных источниках обычно используются ферриты, обеспечивающие рабочие частоты инверторов от 25 до 100 кГц.
Для стабилизации напряжения используется частотно-импульсное преобразование сигнала ошибки. Выходное напряжение через делитель R14-R15 подается на светодиод оптрона VU1. Фототранзистор оптрона подключен к входу управления (выводу 5) DA1. При увеличении выходного напряжения, например, из-за роста сопротивления нагрузки, фототранзистор оптрона открывается сильнее и шунтирует вход управления DA1. Длительность выходных импульсов генератора снижается, соответственно, уменьшается время пребывания ключевого транзистора в открытом состоянии. В результате, напряжение на вторичной обмотке трансформатора также уменьшается, т.е. происходит стабилизация выходного напряжения. При увеличении выходного напряжения описанный процесс происходит наоборот. Перегрев ключевого транзистора VT1 при недостаточном охлаждении может привести к выходу его из строя. Ограничение температуры транзистора осуществляется с помощью терморезистора Rt1, закрепленного через изоляционную прокладку на радиаторе VT1. При нагреве VT1 сопротивление Rt1 уменьшается, что вызывает большее открывание фототранзистора VU1 и, аналогично вышеописанному, снижение напряжения (соответственно, и тока) нагрузки.
Трансформатор выбирается, исходя из необходимой габаритной мощности, которая равна сумме мощностей, потребляемых всеми нагрузками. При самостоятельном изготовлении трансформатора формулы по его расчету можно взять из сети интернет. Но главная сложность изготовления заключается не в расчетах, а в поиске соответствующего феррита и в необходимости специфического распределения слоев обмоток. При токе нагрузки 10 А и напряжении вторичной обмотки на холостом ходу примерно 18 В подходят трансформаторы мощностью 200. 250 Вт с площадью окна 15 см2 и сердечником сечением около 10 см2. Первичная обмотка содержит 146-162 витка провода 0,6 мм, вторичная — 23 витка 4×0,31 мм. Дроссель L1 представляет собой обмотку из 10 витков медного провода ПЭВ 0,81 мм, выполненную на ферритовом стержне 4 мм или на ферритовом кольце типоразмера К12x8x4 мм.

Читайте также:  Регулировка сидений по высоте шевроле круз

Наладку начинают с проверки напряжений питания микросхемы генератора и транзистора инвертора. На наличие импульсов на выходе 3 DA1 указывает светодиодный индикатор HL1 Вместо нагрузки следует подключить автомобильную лампочку (12 В). Выходное напряжение устанавливается подстроечным резистором R14 при среднем положении движка резистора R2. Через непродолжительное время после включения устройство необходимо отключить и проверить тепловой режим радиокомпонентов. Требуемые параметры устройства можно установить изменением частоты генератора (подбором емкости С1), скважности импульсов (резистором R2),изменением подключения выводов вторичной обмотки трансформатора Т1 (при их наличии). Проверка тепловой защиты выполняется подогревом (паяльником) терморезистора Rt1. Выходное напряжение при этом должно снизиться.

Источник

Блок питания с регулировкой тока и напряжения своими руками

Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

Хватит слов приступим к делу!

На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

Как работает регулировка тока?

В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

Читайте также:  Пневмогайковерт с регулировкой момента затяжки профессиональный

Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

А, вот и печатная плата!

На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

Печатная плата блока резисторов

Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

Схема подключения вентилятора

Как подключить Китайский вольтметр амперметр?

При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

Читайте также:  Регулировка фар toyota land cruiser 200

На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

Схема подключения китайского вольтметра амперметра к блоку питания

Испытания блока питания

Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

Как заряжать автомобильный аккумулятор?

Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

Схема блока питания с регулировкой тока и напряжения 2.4…28В 15А

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

Радиодетали для сборки

Регулируемый блок питания с регулировкой тока и напряжения 30А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 50А KBPC5010
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Регулируемый блок питания с регулировкой тока и напряжения 15А

  • Регулируемый стабилитрон (микросхема) TL431
  • Диодный мост на 25А KBPC2510
  • Конденсаторы С1, С2 4700 мкФ 50В
  • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
  • Стабилизатор напряжения L7812CV
  • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
  • Светодиоды LED1, LED2 на 3В зеленый и красный

Чем заменить микросхему TL431?

Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

Источник

Adblock
detector