Меню

Регулировка средств измерений это



Регулировка, градуировка и поверка средств измерений

Техническое единообразие средств измерений достигается их регулировкой, градуировкой и поверкой.

Регулировка средств измерений — это совокупность операций, имеющих целью уменьшение основной погрешности до предельно допустимого значения путем уменьшения систематической состав­ляющей погрешности средств измерений.

Необходимость в регулировке возникает из-за несовершенства технологии изготовления средств измерений. Для выполнения регу­лировки в средствах измерений предусматривают элементы или уз­лы, изменение параметров которых обеспечивает уменьшение адди­тивной или мультипликативной погрешности. Для уменьшения ад­дитивной погрешности в составе средств измерений предусматрива­ется узел регулировки нуля, а для уменьшения мультипликативной погрешности — узел регулировки чувствительности.

При регулировке выбирают несколько точек (значений измеряе­мой величины) в пределах диапазона измерений, в которых систе­матическая погрешность путем регулировки сводится к нулю. Эти точки называют точками регулировки.

На практике в качестве точек регулировки принимают началь­ное и конечное, среднее и конечное или начальное, среднее и конеч­ное значения измеряемой величины в диапазоне измерений.

Градуировка (тарировка) средств измерений — это определение градуировочной характеристики средств измерений.

Применительно к измерительным приборам под градуировкой понимают процесс нанесения отметок на шкалы их или определение значений измеряемой величины, соответствующих уже нанесенным на шкалы отметкам, с целью составления градуировочных характе­ристик или таблиц.

При этом различают: градуировку типовых шкал, индивидуаль­ную градуировку шкалы и градуировку условной шкалы.

Градуировка типовых (печатных) шкал применяется для подав­ляющего большинства рабочих и многих образцовых измерительных приборов. Шкалы этих приборов изготовляются заранее в соответ­ствии с уравнением номинальной статической характеристики (см. § 2.5). При регулировке прибора регулировочным узлам придают значения, при которых систематическая погрешность в точках регулировки равна нулю.

Индивидуальная градуировка шкал осуществляется в тех слу-чаях, когда статическая характеристика нелинейна или близка к линейной, но систематическая погрешность изменяется в диапазоне измерений от прибора к прибору так, что регулировкой не удается уменьшить основную погрешность до пределов ее допустимых зна­чений.

В процессе индивидуальной градуировки на шкалу прибора на­носятся отметки, соответствующие положениям указателя при не­скольких наперед заданных или принятых значениях измеряемой величины, которые последовательно подаются к прибору.

Градуировка условной шкалы состоит в определении с помощью образцовых средств измерений значений измеряемой величины, со­ответствующих нескольким наперед заданным или выбранным от­меткам этой шкалы. Получаемая при такой градуировке зависи­мость представляется графиком или таблицей. Поверка средств из­мерений, т. е. определение их погрешности, выполняется при усло­виях, которые оговорены в названной нормативной документации. Причем степень необходимости ограничения условий поверки опре­деляется зависимостью показаний средства измерений от этих ус­ловий.

Общим при этом является требование, в соответствии с которым основная погрешность средства измерений должна определяться в процессе поверки при нормальных условиях.

Поверка обычно осуществляется на специальных или собранных из соответствующих средств измерений и вспомогательных уст­ройств поверочных установках.

В общем случае поверочной установкой называют измеритель­ную установку, укомплектованную образцовыми средствами изме­рений и предназначенную для поверки других средств измере­ний.

Узловым вопросом при поверке является выбор соотношения между допустимыми погрешностями образцового и поверяемого средств измерений. В общем случае это соотношение выбирают в интервале от 1:2 до 1:10. Чаще других используются соотношения 1:3 или 1:5. Соотношение 1:3 применяется в тех случаях, когда при поверке вводят поправки к показаниям образцового средства измерений, а соотношение 1:5 —когда эти поправки не вводят. Очень важным при этом является соотношение диапазонов измере­ний образцового и поверяемого средств измерений. Верхний предел измерений образцового средства измерений должен быть равен или незначительно превышать верхний предел измерений поверяемого средства измерений.

Необходимая точность образцовых средств измерений, а иногда и их типы регламентируются нормативными документами но повер­ке конкретных средств измерений. Сама операция поверки средств измерений по существу представляет собой передачу размера еди­ницы от образцовых к рабочим средствам измерений. Та же опера­ция (рис. 15.1) осуществляется при передаче размера единицы от эталонов к образцовым средствам измерений.

Для средств технологических измерений применяются следую­щие методы поверки: непосредственное сличение средства измере­ния с образцовым средством измерений того же вида; прямое изме­рение поверяемым средством измерений величины, воспроизводи­мой образцовой мерой.

При поверке измерительного прибора методом прямого измере­ния величин, воспроизводимых образцовыми мерами, значения последних выбирают равными соответствующим (чаще всего оциф­рованным) отметкам шкалы измерительного прибора.

При поверке измерительного прибора методом непосредственно­го сличения с образцовым на вход этих измерительных приборов подается поочередно несколько значений измеряемой величины (обычно соответствующих оцифрованным отметкам) и определяют разность показаний образцового и поверяемого прибора. Опреде­ление этой разности осуществляется одним из двух способов (рис. 15.2).

Читайте также:  Окно с регулировкой затемнения

По первому способу путем изменения измеряемой величины устанавливают ее значение, соответствующее поверяемой отметке на шкале образцового прибора ОП (рис. 15.2, а), а по шкале пове­ряемого прибора определяют погрешность Δ.

По второму способу значение измеряемой величины устанавли­вают по шкале поверяемого прибора ПП (рис. 15.2, б), а погреш­ность Δ определяют по шкале образцово­го прибора ОП.

Первый способ удобен при автомати­зации поверочных работ. Он позволяет с помощью одного образцового прибора и одного устройст­ва, воспроизводяще­го измеряемую вели­чину, поверять сразу несколько приборов. Второй способ по­зволяет точнее, чем первый, определять погрешность, так как шкалы образцового прибора имеют большее число делений, чем шкалы поверяемого. Такое преимущество данного способа про­является только при тщательной установке указателя поверяемого прибора на оцифрованные отметки шкалы.

Рис. 15.2. Способы поверки измерительных приборов

Как при поверке измерительных приборов методом прямого из­мерения величин, воспроизводимых мерами, так и при поверке ме­тодом непосредственного сличения с образцовым прибором наи­большую, полученную во всем диапазоне измерения погрешность принимают за основную погрешность поверяемого измерительного прибора.

Для измерительных приборов, у которых нормировано значение вариации, при поверке показания снимают минимум дважды: при плавном возрастании измеряемой величины и при ее плавном убы­вании. При этом устанавливаются такие значения измеряемой вели­чины, при которых указатель подходит к соответствующей отметке шкалы с одной или с другой стороны, не переходя ее. За значение вариации принимают наибольшее значение из полученных для всех поверяемых отметок в диапазоне измерений.

Поверка измерительных преобразователей осуществляется обыч­но теми же методами, что и поверка измерительных приборов при пяти и более заранее принятых значениях измеряемой величины, равномерно распределенных по диапазону измерений.

Воспроизведение или измерение входной величины осуществля­ется соответственно образцовой мерой или образцовым измеритель­ным прибором, а для измерения выходного сигнала также исполь­зуют образцовый измерительный прибор. Результат поверки пред­ставляется погрешностью и вариацией по входу или по выходу.

Для сложных средств измерений, состоящих из нескольких взаи­мосвязанных узлов, и для измерительных систем применяют поэле­ментную или комплектную поверку.

Комплектной называют поверку, при которой средство измере­ний поверяется в целом — в полном комплекте.

Поэлементной называют поверку, при которой определяется по­грешность отдельных частей поверяемого средства измерений, а его общая погрешность определяется по найденным погрешностям этих частей.

На практике поэлементную поверку нередко проводят в сочета­нии с комплектной.

Результаты поверки для многих средств измерений представля­ются в виде протокола, который является основным документом, имеющим юридическое значение.

Дата публикования: 2015-01-23 ; Прочитано: 2740 | Нарушение авторского права страницы

Источник

Регулировка средств измерений

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности.

Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и главным образом мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Читайте также:  Мотоблок нева карбюратор регулировка субару

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т. е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Источник

50. Регулировка средств измерений

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности.

Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и главным образом мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т. е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Источник

Регулировка и градуировка средств измерений

Используя методы теории точности, всегда можно найти такие допуски на параметры элементов измерительного прибора, соблюдение которых гарантировало бы и без регулировки получение их с погрешностями, меньшими допустимых пределов. Однако во многих случаях эти допуски оказываются настолько малы, что изготовление прибора с заданными пределами допускаемых погрешностей становится технологически неосуществимым. Выйти из положения можно двумя путями: во-первых, расширить допуски на параметры некоторых элементов приборов и ввести в его конструкцию дополнительные регулировочные узлы, способные компенсировать влияние отклонений этих параметров от их номинальных значений, а во-вторых, осуществить специальную градуировку измерительного прибора.

Читайте также:  Как отрегулировать птф на фольксваген поло седан

В большинстве случаев в измерительном приборе можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы.

После регулировки нуля, т.е. устранения аддитивной погрешности, систематическая погрешность обращается в нуль на нижнем пределе измерения, а в диапазоне измерения принимает значения, являющиеся случайной функцией измеряемой величины.

Более высокими метрологическими характеристиками обладают измерительные приборы, имеющие узел регулировки чувствительности. Наличие такой регулировки позволяет поворачивать статическую характеристику, что открывает большие возможности для снижения погрешности схемы и, главным образом, мультипликативной погрешности. Так, одновременной регулировкой нуля и чувствительности можно свести систематическую погрешность к нулю сразу в нескольких точках шкалы прибора. От правильности выбора таких точек зависят значения оставшихся после регулировки систематических погрешностей в других точках шкалы.

Теория регулировки должна дать ответ на вопрос, какие точки шкалы следует выбрать в качестве точек регулировки. Однако общего решения этой задачи еще не найдено. Трудность решения усугубляется тем, что положение этих точек на шкале определяется не только схемой и конструкцией прибора, но и технологией изготовления его элементов и узлов.

На практике в качестве точек регулировки принимают начальное и конечное, среднее и конечное или начальное, среднее и конечное значения измеряемой величины в диапазоне измерения. При этом значения систематической погрешности близки к минимально возможным, поскольку в действительности точки регулировки часто располагаются близко к началу, середине или концу шкалы.

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки.

1. Использование типовых шкал. Для подавляющего большинства рабочих и многих образцовых приборов используют типовые шкалы, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора. Если статическая характеристика линейна, то шкала оказывается равномерной. При регулировке параметрам элементов прибора экспериментально придают такие значения, при которых погрешность в точках регулировки становится равной нулю.

2. Индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа (например, вследствие разброса нелинейности характеристик чувствительного элемента) так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.

Индивидуальную градуировку проводят в следующем порядке.

На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких, наперед заданных или выбранных значений. На циферблате наносят отметки, соответствующие положениям указателя при этих значениях измеряемой величины, а расстояния между отметками делят на равные части.

При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке она достигает значения, равного погрешности обратного хода.

3. Градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины. В результате определяют зависимость числа делений шкалы, пройденных указателем от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода, градуировку осуществляют раздельно при прямом и обратном ходе.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Adblock
detector