Меню

Регулировка с помощью оптопары



Оптопары — характеристики, устройство, применение

Что такое оптопара

Оптрон — оптоэлектронный прибор, главными функциональными частями которого выступают источник света и фотоприемник, гальванически не связанные друг с другом, но расположенные внутри общего герметичного корпуса. Принцип действия оптрона базируется на том, что подаваемый на него электрический сигнал вызывает свечение на передающей стороне, и уже в форме света сигнал принимается фотоприемником, инициируя электрический сигнал на приемной стороне. То есть сигнал передается и принимается посредством оптической связи внутри электронного компонента.

Оптопара — наиболее простая разновидность оптрона. Она состоит только из излучающей и принимающей частей. Более сложная разновидность оптрона — оптоэлектронная микросхема, внутри которой содержится несколько оптопар, сопряженных с одним либо несколькими согласующими или усилительными устройствами.

Таким образом, оптопара представляет собой электронный компонент, обеспечивающий оптическую передачу сигнала в цепи без гальванической связи между источником сигнала и его приемником, поскольку фотоны, как известно, электрически нейтральны.

Структура и характеристики оптопар

В оптопарах применяются фотоприемники, чувствительные в ближней инфракрасной и видимой областях, поскольку именно для данной части спектра характерны источники интенсивного излучения, могущие работать в качестве фотоприемников без охлаждения. Фотоприемники с р-n-переходами (диоды и транзисторы) на основе кремния универсальны, область их максимальной спектральной чувствительности находится вблизи 0,8 мкм.

Оптопара характеризуется в первую очередь коэффициентом передачи по току CTR, то есть отношением токов входного и выходного сигналов. Следующий параметр — скорость передачи сигнала, по сути — граничная частота fc работы оптопары, связанная с временами фронта tr и среза tf для передаваемых импульсов. Наконец, параметры, характеризующие оптопару с точки зрения гальванической развязки: сопротивление развязки Riso, максимальное напряжение Viso и проходная емкость Cf.

Входное устройство, входящее в структуру оптрона, предназначено для создания оптимальных условий работы излучателя (светодиода), для смещения рабочей точки в линейную зону ВАХ.

Входное устройство обладает достаточным быстродействием и широким диапазоном входных токов, обеспечивая надежность передачи информации даже при малом (пороговом) токе. Оптическая среда находится внутри корпуса, через нее передается свет от излучателя к фотоприемнику.

В оптронах с управляемым оптическим каналом имеется дополнительное устройство управления, через которое можно с помощью электрических или магнитных средств влиять на свойства оптической среды. На стороне фотоприемника сигнал восстанавливается, с высоким быстродействием преобразуясь из оптического в электрический.

Выходное устройство на стороне фотоприемника (например включенный в схему фототранзистор) призван преобразовать сигнал в стандартную электрическую форму, удобную для дальнейшей обработки в следующих за оптроном блоках. Оптопара зачастую не содержит входных и выходных устройств, поэтому ей требуются внешние цепи для создания нормального режима работы в схеме того или иного прибора.

Оптопары находят широкое применение в цепях гальванической развязки блоков различной аппаратуры, где есть низковольтные и высоковольтные цепи, цепи управления развязываются от силовых цепей: управление мощными симисторами и тиристорами, схемами реле и т. д.

В радиотехнических схемах модуляции и автоматической регулировки усиления используются диодные, транзисторные и резисторные оптроны. Через воздействие по оптическому каналу схема бесконтактно регулируется и выводится на оптимальный рабочий режим.

Оптопары настолько универсальны, что даже просто в качестве элементов гальванической развязки и бесконтактного управления применяются в настолько разнообразных отраслях и в таком количестве уникальных функций, что все и не перечислить.

Вот лишь некоторые из них: вычислительная техника, техника связи, автоматика, радиоаппаратура, системы автоматизированного управления, измерительные приборы, системы контроля и регулирования, медицинская техника, устройства визуального отображения информации и многое многое другое.

Применение оптопар на печатных платах позволяет добиться идеальной гальванической развязки, когда требования к изоляции высоковольтных и низковольтных, входных и выходных цепей по сопротивлению чрезвычайно высоки. Напряжение между цепями передатчика и приемника популярной оптопары PC817 составляет, например, 5000 В. Кроме того с помощью оптической развязки достигается чрезвычайно малая проходная емкость, порядка 1 пф.

При помощи оптопар очень просто реализуется бесконтактное управление, при этом сохраняется простор для уникальных конструкторских решений касательно непосредственно управляющих цепей. Немаловажно здесь и то, что совершенно отсутствует реакция приемника на источник, то есть информация передается однонаправленно.

Широчайшая полоса пропускания оптопары исключает ограничения накладываемые низкими частотами: при помощи света можно передавать хоть постоянный сигнал, хоть импульсный, причем с очень крутыми фронтами, что принципиально невозможно осуществить при помощи импульсных трансформаторов. Канал связи внутри оптопары абсолютно невосприимчив к воздействию электромагнитных полей, поэтому сигнал защищен от помех и наводок. Наконец, оптопары полностью совместимы с прочими электронными компонентами.

Источник

Оптопара (оптрон, оптореле) — применение, классификация, параметры и особенности работы

Оптопарой (иначе – оптроном) называют электронные прибора предназначенные для преобразования электрических сигналов в световые, их передачи через оптические каналы и повторного преобразования сигнала вновь в электрический. Конструкция оптрона подразумевает наличие специального светового излучателя (в современных устройствах для этого применяются световые диоды, прежние модели оснащались малогабаритными лампами накаливания) и устройства, отвечающего за преобразование полученного оптического сигнала (фотоприёмника). Обе эти составляющие объединяются при помощи оптического канала и общего корпуса.

Читайте также:  Ford focus 2 регулировка клапанов зазор

Классификация разновидностей оптопар

Существует несколько характеристик, в соответствии с которыми можно разделить модели оптопар на несколько групп.

В зависимости от степени интеграции:

  • элементарный оптрон – включает в себя 2 и более элемента объединённых общим корпусом;
  • оптронная интегральная схема – конструкция состоит из одной и более оптопар и, помимо этого, ещё может быть оснащена дополняющими элементами (например, усилителем).

В зависимости от разновидности оптического канала:

  • Оптический канал открытого типа;
  • Оптический канал закрытого типа.

В зависимости от типа фотоприёмника:

  • Фоторезисторные (или просто резисторные оптопары);
  • Фотодиодные оптопары;
  • Фототранзисторные (используется обычный или составной биполярный фототранзистор) оптопары;
  • Фототиристорные , либо фотосимисторные оптопары;
  • Оптопары функционирующие с помощью фотогальванического генератора (солнечная батарейка).

Конструкция устройств последнего вида зачастую дополняются полевыми транзисторами, за управление затвором которого отвечает тот же генератор.

Фотосимисторные оптроны или те, которые оснащены полевыми транзисторами, могут называться «оптореле», либо « твердотельное реле ».

Рис.1: Устройство оптрона

Оптоэлектронные устройства работают по-разному в зависимости от того, к какому из двух видов направлений они относятся:

Работа прибора базируется на принципе, в соответствии с которым происходит преобразование световой энергии в электрическую. Причём, переход осуществляется посредством твёрдого тела и происходящих в нём процессов внутреннего фотоэлектрического эффекта (выражающегося в испускании веществом электронов под воздействием фотонов) и эффекта свечения под действием электрического поля.

Прибор функционирует благодаря тонкому взаимодействию твёрдого тела и электромагнитного излучения, а также используя лазерные, голографические и фотохимические устройства.

Фотонные электронно-вычислительные машины компонуются с использованием одной из двух категорий оптических элементов:

  • Оптронов;
  • Кванто-оптических элементов.

Они являются моделями устройств соответственно электронно-оптического и оптического направлений.

Будет ли оптрон передавать сигнал линейно, определяется теми характеристиками, которыми обладает вмонтированный в конструкцию фотоприёмник. Наибольшую линейность передачи можно ожидать от резисторных оптронов. Как следствие, процесс эксплуатации подобных устройств отличается наибольшим удобством. Ступенью ниже стоят модели с фотодиодами и одиночными биполярными транзисторами.

Для обеспечения работы импульсных приборов применяют оптроны на биполярных, либо полевых транзисторах, поскольку там нет необходимости в линейной передаче сигнала.

Наконец, фототиристорные оптроны монтируют, чтобы обеспечить гальваническую изоляцию и безопасность эксплуатации устройства.

Применение

Существует множество сфер, в которых необходимо использование оптронов. Такая широта применения обусловлена тем, что они являются элементами, обладающими множеством различных свойств и на каждое их качество приходится отдельная сфера применения.

  • Фиксация механического воздействия (применяются устройства, оснащённые оптическим каналом открытого типа, который можно перекрыть (оказать механическое воздействие), а значит, само устройство можно использовать как сенсор):
  • Детекторы наличия (выявление наличия/отсутствия бумажных листов в принтере);
  • Детекторы конечной (начальной) точки;
  • Счётчики;
  • Дискретные спидометры.
  • Гальваническая изоляция (использование оптронов позволяет передавать сигнал не связанный с напряжением, также с их помощью обеспечивается бесконтактное управление и защита), которая может обеспечиваться:
  • Оптопарой (в большинстве случаев применяется как информационный передатчик);
  • Оптореле (более прочего подходит для управления сигнальными и силовыми цепями).

Оптопары

Использование транзисторных, либо интегральных оптопар особенно актуально, если требуется обеспечить гальваническую изоляцию в сигнальной цепи или цепи с незначительным управляющим током. Роль элемента управления могут выполнять трёхэлектродные полупроводниковые приборы, схемы, управляющие дискретными сигналами, а также цепи с особой специализацией.

Параметры и особенности работы оптопар

Опираясь на точную конструкцию прибора, можно определить его электрическую прочность. Под этим термином понимается значение напряжения, возникающего между цепями входа и выхода.Так, производители оптопар, обеспечивающих гальваническую изоляцию, демонстрируют целый ряд моделей с различными корпусами:

В зависимости от типа корпуса у оптопары формируется то или иное напряжение изоляции. Чтобы создать условия, в которых уровень напряжения достаточный для пробоя изоляции был достаточно велик, следует сконструировать оптопару таким образом, чтобы следующие детали были расположены достаточно далеко друг от друга:

  • Световой диод и оптический регистратор;
  • Внутренняя и внешняя сторона корпуса.

В отдельных случаях можно обнаружить оптопары специализированной группы, изготавливаемые в соответствии с международным стандартом безопасности. Уровень электрической прочности у этих моделей на порядок выше.

Другой значимый параметр транзисторной оптопары носит название «коэффициента передачи тока». Согласно значению этого коэффициента устройство относят к той или иной категории, что и отображается в названии модели.

Читайте также:  Как отрегулировать клапан на тнвд камаз

Относительно уровня нижней рабочей частоты оптронов никаких ограничений нет: они хорошо функционируют в цепи с постоянным током. А верхняя граница рабочей частоты этих приборов, задействованных в передаче сигналов цифрового происхождения, исчисляется в сотнях мегагерц. Для оптронов линейного типа этот показатель ограничивается десятками мегагерц. Для самых медленных конструкций, включающих в себя лампу накаливания, наиболее характерна роль низкочастотных фильтров, работающих на частотах, не достигающих 10 Герц

Транзисторная оптопара и производимые ею шумы

Существует две основные причины тому, что работа транзисторной пары сопровождается шумовыми эффектами:

  • Проходная ёмкость между световым диодом и транзисторной базой;
  • Паразитная ёмкость между коллектором и фототранзисторной базой.

Чтобы побороть первую причину, понадобится вмонтировать особый экран. Вторая же устраняется через верно подобранный рабочий режим.

Оптореле

Оптореле, иначе называемое твердотельным реле, обычно используется для регуляции работы цепи с большими управляющими токами. Роль управляющего элемента здесь обычно выполняют два MOSFET транзистора со встречным подключением, подобная конфигурация обеспечивает возможность функционирования в условиях переменного тока.

Рис.3: Оптореле КР293 КП2В

Классификация видов оптореле

Для оптореле определено три типа топологий:

  • Нормально разомкнутые .Предполагается, что управляющая цепь будет замыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  • Нормально замкнутые .Предполагается, что управляющая цепь будет размыкаться лишь в момент подачи управляющего напряжения на выводы светового диода.
  • Переключающая .Третья топология предполагает сочетание каналов нормально-замкнутого и нормально разомкнутого типа.

Оптореле подобно оптопаре имеет характеристику по электрической прочности.

Разновидности оптореле

  • Модели стандартного типа;
  • Модели, имеющие малое сопротивление;
  • Модели, имеющие малое СxR;
  • Модели, имеющие малое напряжение смещения;
  • Модели, имеющие высокое напряжение изоляции.

Сферы применения оптореле

  • Модем;
  • Измерительное устройство;
  • Сопряжение с исполнительным устройством;
  • Автоматические телефонные станции;
  • Электрический, тепловой, газовый счётчик;
  • Коммутатор сигналов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное. Делитесь информацией в соцсетях, ставьте лайки, если вам понравилось — это поможет развитию канала

Источник

Оптопара PC817 принцип работы и очень простая проверка.

Оптопара PC817

Описание, характеристики , Datasheet и методы проверки оптронов на примере PC817.

В продолжение темы «Популярные радиодетали при ремонтах импульсных блоков питания» разберем еще одну деталь- оптопара (оптрон ) PC817. Он состоит из светодиода и фототранзистора. Между собой электрически никак не связанны, благодаря чему на основе PC817 можно реализовать гальваническую развязку двух частей схемы — например с высоким напряжением и с низким. Открытие фототранзистора зависит от освещенности светодиодом. Как это происходит более подробно я разберу в следующей статье где в экспериментах подавая сигналы с генератора и анализируя его при помощи осциллографа можно понять более точную картину работы оптопары.

Еще в других статьях я расскажу о нестандартном использовании оптрона первая в роли реле -RS триггера с фиксацией состояний , а во второй генератор периодических сигналов . И используя эти схемные решения соберу очень простой тестер оптопар. Которому не не нужны никакие дорогие и редкие приборы, а всего лишь несколько дешевых радиодеталей.

Деталь не редкая и не дорогая. Но от нее зависит очень многое. Она используется практически в каждом ходовом (я не имею ввиду каком нибудь эксклюзивном) импульсном БЛОКЕ ПИТАНИЯ и выполняет роль обратной связи и чаще всего в связке тоже с очень популярной радиодеталью TL431 Описание и проверка здесь

Для тех читателей, кому легче информацию воспринимать на слух, советуем посмотреть видео в самом низу страницы.

Оптопара ( Оптрон ) PC817

Максимальное напряжение изоляции вход-выход5000 ВМаксимальный прямой ток50 мАМаксимальная рассеиваемая на коллекторе мощность150 мВтМаксимальная пропускаемая частота80 кГцДиапазон рабочих температур-30°C..+100°CТип корпусаDIP-4

  • шаг выводов – 2,54 мм;
  • между рядами – 7,62 мм.

Производитель PC817 – Sharp, встречаются другие производители электронных компонентов выпускают аналоги- например:

  • Siemens – SFH618
  • Toshiba – TLP521-1
  • NEC – PC2501-1
  • LITEON – LTV817
  • Cosmo – KP1010

Кроме одинарного оптрона PC817 выпускаются и другие варианты:

  • PC827 — сдвоенный;
  • PC837 – строенный;
  • PC847 – счетверенный.

Источник

ОПТОПАРА = УСИЛИТЕЛЬ ?

КУ Оптопары ? Да кому он нужен! А мне вот интересно!

Ранее я уже пытался сделать из оптопары усилитель звука. Но тот эксперимент скорее был пробным — меня интересовало качество звука а не увеличение его громкости.

В этот раз я рашил подойти к вопросу более серьезно и выяснить главное — Может оптопара усиливать ток или её назначение только передача сигналов с развязкой по напряжению.

Читайте также:  Регулировка и смазка механизмов пластиковых окон

Собрать тестовую схему не составило труда. Я использовал в качестве жертвы Щелевой датчик который представляет собой пару столбиков с небольшой Щелью между ними. Но щелевым он называется вовсе не по этому ! Каждый столбик содержащий оптический прибор имеет Щель обращенную внутрь датчика. каждая из щелей смотрит как раз в сторону другой. Эта пара занимается тем, что из одного столбика светодиод через щелочку светит на щель второго столбика из которой выглядывает транзистор с открытой базой.

Свет, проникая через щель , открывает фототранзистор ровно на столько на сколько интенсивно световое пятно на открытой базе.

Любое прерывание луча сопровождается закрытием транзистора и дает сигнал исполнительному устройству.

По схеме я , подавая фиксируемый ток на светодиод, наблюдал изменение тока через фототранзистор. Эти изменения при отношении к величине изменения тока светодиода и могли помочь мне вычислить коэффициент усиления.

Увы. Опыт прекрасно показал, что изменения тока на светодиоде в десятки раз больше чем изменения тока через транзистор, а значит об усилении по току не может быть и речи.

Но ведь возможно есть усиление по напряжению . Это точно нужно проверить ведь иначе этот эксперимент не может быть завершенным.

Вполне возможно что усилитель из оптопары вполне может существовать или это моя фантазия которую стоит реализовать в гвоздях и пластмассе =)

Источник

Мир микроконтроллеров

Популярное

Подключение оптопары к микроконтроллеру AVR ATmega8

В этой статье мы рассмотрим подключение оптопары к микроконтроллеру ATmega8 (семейство AVR). Оптопары представляют собой устройства, предназначенные для изоляции электронных и электрических схем. Это простое устройство может изолировать чувствительную электронику от «грубой» электроники такой, к примеру, как электродвигатели, при этом сохраняя контроль над источником.

В данном примере мы будем управлять скоростью вращения электродвигателя переменного тока (конкретно вентилятора) с помощью логического управления от микроконтроллера. Мы могли бы это сделать и с помощью простого соединения (без использования оптопары), но тогда бы нам пришлось столкнуться с появлением шумов в схеме управления скоростью вращения электродвигателем. Поскольку это двигатель переменного тока нам бы пришлось использовать сложные фильтрующие схемы чтобы избавиться от этого шума. Но с помощью оптопары мы можем избежать прямого контакта микроконтроллера с электродвигателем и при этом сохранить полный контроль над системой.

Оптоэлектронные устройства, как следует из их названия, имеют в своем составе триггерную систему, управляемую с помощью света. Мы передаем сигнал на светоизлучающее устройство на источнике, а на приемном конце мы имеем триггерный переключатель, работающий от света. В данном проекте мы будем подключать оптопару 4N25 к микроконтроллеру ATmega8. Когда выключатель на стороне контроллера будет нажат, светодиод оптопары будет зажигаться.

Необходимые компоненты

Аппаратное обеспечение

  1. Микроконтроллер ATmega8 (купить на AliExpress).
  2. Программатор AVR-ISP (купить на AliExpress), USBASP (купить на AliExpress) или другой подобный.
  3. Оптопара 4N25.
  4. Светодиод.
  5. Резистор 1 кОм (3 шт.).
  6. Источник питания с напряжением 5 Вольт.

Программное обеспечение

  1. Atmel Studio версии 6.1 (или выше).
  2. Progisp или flash magic (необязательно).

Работа схемы

Схема устройства приведена на следующем рисунке.

Прежде чем двигаться дальше, рассмотрим принципы работы оптопары. Внутренняя схема оптопары приведена на следующем рисунке.

Контакты PINA и PINC подсоединяются к источнику. Контакты PINB, PINC, PINE подсоединяются к нагрузке.

Из представленного рисунка видно, что оптопара состоит из светодиода на стороне источника и фототранзистора на стороне нагрузки. Система заключена в замкнутый корпус, что увеличивает эффективность работы фототранзистора.

Когда от источника поступает сигнал на светодиод оптопары он испускает свет и фототранзистор, расположенный рядом со светодиодом, срабатывает и приводит в исполнение подсоединенную к его выходам цепь. Таким образом, управляющий сигнал от микроконтроллера преобразуется в свет, который заставляет сработать фототранзистор и тем самым подать необходимый сигнал в управляемую нагрузку (в представленной схеме нагрузкой является светодиод, но в общем случае подобным образом можно управлять и электродвигателем).

Эквивалентную электрическую схему оптопары можно изобразить следующим образом.

При нажатии кнопки, подсоединенной к микроконтроллеру, он подает управляющий импульс на светодиод оптопары (в эквивалентной схеме замещенный диодом), что заставляет сработать транзистор и зажечь подсоединенный к нему светодиод (в денном случае светодиод является нагрузкой оптопары). Более детально принцип работы данной схемы рассмотрен в комментариях к представленной программе.

Исходный код программы на языке С (Си) с пояснениями

Программа для рассматриваемой схемы подключения оптопары к микроконтроллеру AVR ATmega8 представлена следующим фрагментом кода на языке С (Си). Комментарии к коду программу поясняют принцип работы отдельных команд.

Источник

Adblock
detector