Меню

Регулировка частоты синхронный генератор



Режимы работы синхронных генераторов, рабочие характеристики генераторов

Основными величинами, характеризующими синхронный генератор, являются: напряжение на зажимах U , нагрузка I , полная мощность P (кВа), число оборотов ротора в минуту n , коэффициент мощности cos φ .

Важнейшие рабочие характеристики синхронного генератора следующие:

характеристика холостого хода,

Характеристика холостого хода синхронного генератора

Электродвижущая сила генератора пропорциональна величине магнитного потока Ф, создаваемого током возбуждения i в, и числу оборотов n ротора генератора в минуту:

где с — коэффициент пропорциональности.

Хотя величина электродвижущей силы синхронного генератора зависит от числа оборотов n ротора, регулировать ее путем изменения скорости вращения ротора невозможно, так как с числом оборотов ротора генератора связана частота электродвижущей силы, которая должна быть сохранена постоянной.

Следовательно, остается единственный способ регулировки величины электродвижущей силы синхронного генератора — это изменение основного магнитного потока Ф. Последнее обычно достигается путем регулирования тока возбуждения iв с помощью реостата, введенного в цепь возбуждения генератора. В том случае когда обмотка возбуждения питается током от генератора постоянного тока, сидящего на одном валу с данным синхронным генератором, ток возбуждения синхронного генератора регулируется изменением напряжения на зажимах генератора постоянного тока.

Зависимость электродвижущей силы Е синхронного генератора от тока возбуждения iв при постоянстве номинальной скорости вращения ротора ( n = const) и нагрузке, равной нулю ( 1 = 0), называется характеристикой холостого хода генератора.

На рисунке 1 приведена характеристика холостого хода генератора. Здесь восходящая ветвь 1 кривой снята при возрастании тока i в от нуля до i в m , а нисходящая ветвь 2 кривой — при изменении iв от iвm до iв = 0.

Рис. 1. Характеристика холостого хода синхронного генератора

Несовпадение восходящей 1 и нисходящей 2 ветвей объясняется остаточным магнетизмом. Чем больше площадь, ограниченная этими ветвями, тем больше потерь энергии в стали синхронного генератора на перемагничивание.

Крутизна подъема кривой холостого хода на ее начальном прямолинейном участке характеризует магнитную цепь синхронного генератора. Чем меньше расход ампер-витков в воздушных зазорах генератора, тем при прочих одинаковых условиях будет круче характеристика холостого хода генератора.

Внешняя характеристика генератора

Напряжение на зажимах нагруженного синхронного генератора зависит от электродвижущей силы Е генератора, от падения напряжения в активном сопротивлении его статорной обмотки, падения напряжения, обусловленного электродвижущей силой самоиндукции рассеяния Es, и падения напряжения, обусловленного реакцией якоря.

Электродвижущая сила рассеяния Es, как известно, зависит от магнитного потока рассеяния Ф s , который не проникает в магнитные полюса ротора генератора и, следовательно, не изменяет степени намагничивания генератора. Электродвижущая сила самоиндукции рассеяния Es генератора относительно мала, а поэтому практически ею можно пренебречь. В соответствии с этим ту часть электродвижущей силы генератора, которая компенсирует электродвижущую силу самоиндукции рассеяния Es, можно считать практически равной нулю.

Реакция якоря оказывает более заметное влияние на режим работы синхронного генератора и, в частности, на величину напряжения на его зажимах. Степень этого влияния зависит не только от величины нагрузки генератора, но и от характера нагрузки.

Рассмотрим вначале влияние реакции якоря синхронного генератора для случая, когда нагрузка генератора носит чисто активный характер. Для этой цели возьмем часть схемы работающего синхронного генератора, изображенную на рис. 2 ,а. Здесь показаны часть статора с одним активным проводником якорной обмотки и часть ротора с несколькими его магнитными полюсами.

Рис. 2. Влияние реакции якоря для нагрузок: а — активного, б — индуктивного, в — емкостного характера

В рассматриваемый момент времени северный полюс одного из электромагнитов, вращающихся вместе с ротором против часовой стрелки, как раз проходит под активным проводником статорной обмотки.

Электродвижущая сила, индуктированная в этом проводнике, направлена к нам из-за плоскости рисунка. А так как нагрузка генератора носит чисто активный характер, то ток I в якорной обмотке совпадает по фазе с электродвижущей силой. Следовательно, в активном проводнике статорной обмотки ток течет к нам из-за плоскости рисунка.

Магнитные линии поля, создаваемого электромагнитами, показаны здесь сплошными линиями, а магнитные линии поля, создаваемого током провода якорной обмотки, — пунктирной линией.

Внизу на рис. 2 ,а показана векторная диаграмма магнитной индукции результирующего магнитного поля, находящегося над северным полюсом электромагнита. Здесь мы видим, что магнитная индукция В основного магнитного поля, создаваемого электромагнитом, имеет радиальное направление, а магнитная индукция В я магнитного поля тока якорной обмотки направлена вправо и перпендикулярно вектору В .

Читайте также:  Регулировка клапанов на td42t

Результирующая магнитная индукция Врез направлена вверх и вправо. Это значит, что в результате сложения магнитных полей произошло некоторое искажение основного магнитного поля. Слева от северного полюса оно несколько ослабилось, а справа — несколько усилилось.

Нетрудно видеть, что радиальная составляющая вектора результирующей магнитной индукции, от которой по сути дела зависит величина индуктированной электродвижущей силы генератора, не изменилась. Следовательно, реакция якоря при чисто активной нагрузке генератора не влияет на величину электродвижущей силы генератора. Это значит, что и падение напряжения в генераторе при чисто активной нагрузке обусловлено только падением напряжения в активном сопротивлении генератора, если пренебречь электродвижущей силой самоиндукции рассеяния.

Теперь допустим, что нагрузка синхронного генератора носит чисто индуктивный характер. В этом случае ток I отстает по фазе от электродвижущей силы Е на угол π/2 . Это значит, что максимум тока возникает в проводе несколько позднее, чем максимум электродвижущей силы. Следовательно, когда в проводе якорной обмотки ток достигнет максимального значения, северный полюс N будет уже не под этим проводом, а сместится несколько дальше в направлении вращения ротора, как это показано на рис. 2 ,б.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены навстречу магнитным линиям основного магнитного поля генератора, создаваемого магнитными полюсами. Это приводит к тому, что основное магнитное пате не только искажается, но и делается несколько слабее.

На рис. 2,6 приведена векторная диаграмма магнитных индукций: основного магнитного поля В, магнитного поля, обусловленного реакцией якоря В я, и результирующего магнитного поля В рез.

Здесь мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала меньше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, стала меньше и индуктированная электродвижущая сила, так как она обусловлена радиальной составляющей магнитной индукции. А это значит, что напряжение на зажимах генератора при всех прочих равных условиях будет меньше, чем напряжение при чисто активной нагрузке генератора.

Если генератор имеет нагрузку чисто емкостного характера, то ток в нем опережает по фазе электродвижущую силу на угол π/2 . Ток в проводниках якорной обмотки генератора теперь достигает максимума раньше, чем электродвижущая сила Е. Следовательно, когда в проводе якорной обмотки (рис. 2,в) ток достигнет максимального значения, северный полюс N еще не подойдет под этот провод.

В этом случае магнитные линии (пунктирные линии) магнитного потока якорной обмотки замыкаются через два соседних разноименных полюса N и S и направлены попутно с магнитными линиями основного магнитного поля генератора. Это приводит к тому, что основное магнитное поле генератора не только искажается, но и несколько усиливается.

На рис. 2,в приведена векторная диаграмма магнитной индукции: основного магнитного поля В , магнитного поля, обусловленного реакцией якоря Вя, и результирующего магнитного поля B рез. Мы видим, что радиальная составляющая магнитной индукции результирующего магнитного поля стала больше магнитной индукции В основного магнитного поля на величину Δ В. Следовательно, увеличилась и индуктированная электродвижущая сила генератора.А это значит, что напряжение на зажимах генератора при всех прочих одинаковых условиях станет больше, чем напряжение при чисто индуктивной нагрузке генератора.

Выяснив влияние реакции якоря на электродвижущую силу синхронного генератора при различных по своему характеру нагрузках, перейдем к выяснению внешней характеристики генератора. Внешней характеристикой синхронного генератора называется зависимость напряжения U на его зажимах от нагрузки I при постоянной скорости вращения ротора (n = const), постоянстве тока возбуждения (i в = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 3 приведены внешние характеристики синхронного генератора для различных по своему характеру нагрузок. Кривая 1 выражает внешнюю характеристику при активной нагрузке (cos φ = 1,0). В этом случае напряжение на зажимах генератора падает при изменении нагрузки от холостого хода до номинальной в пределах 10 — 20% напряжения при холостом ходе генератора.

Читайте также:  Что регулирует гормон пролактин

Кривая 2 выражает внешнюю характеристику при активно-индуктивной нагрузке (cos φ = 0 ,8). В этом случае напряжение на зажимах генератора падает быстрее из-за размагничивающего действия реакции якоря. При изменении нагрузки генератора от холостого хода до номинальной напряжение уменьшается в пределах 20 — 30% напряжения при холостом ходе.

Кривая 3 выражает внешнюю характеристику синхронного генератора при активно-емкостной нагрузке (cos φ = 0,8). В этом случае напряжение на зажимах генератора несколько растет из-за намагничивающего действия реакции якоря.

Рис. 3. Внешние характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 емкостной

Регулировочная характеристика синхронного генератора

Регулировочная характеристика синхронного генератора выражает зависимость тока возбуждения i в генератора от нагрузки I при постоянстве действующего значения напряжения на зажимах генератора (U = const), постоянстве числа оборотов ротора генератора в минуту ( n = const) и постоянстве коэффициента мощности (cos φ = const).

На рис. 4 приведены три регулировочные характеристики синхронного генератора. Кривая 1 относится к случаю активной нагрузки (cos φ = 1 ) .

Рис. 4. Регулировочные характеристики генератора переменного тока для различных нагрузок: 1 — активной, 2 — индуктивной, 3 — емкостной

Здесь мы видим, что с ростом нагрузки I генератора ток возбуждения растет. Это понятно, так как с ростом нагрузки I увеличивается падение напряжения в активном сопротивлении якорной обмотки генератора и требуется увеличить электродвижущую силу Е генератора путем увеличения тока возбуждения i в , чтобы сохранить постоянство напряжения U.

Кривая 2 относится к случаю активно-индуктивной нагрузки при cos φ = 0 ,8 . Эта кривая поднимается круче, чем кривая 1, вследствие размагничивающего действия реакции якоря, снижающего величину электродвижущей силы Е, и, следовательно, напряжение U на зажимах генератора.

Кривая 3 относится к случаю активно-емкостной нагрузки при cos φ = 0,8. Эта кривая показывает, что с ростом нагрузки генератора требуется меньший ток возбуждения iв генератора для поддержания постоянства напряжения на его зажимах. Это понятно, так как в этом случае реакция якоря усиливает основной магнитный поток и, следовательно, способствует увеличению электродвижущей силы генератора и напряжения на его зажимах.

Источник

Управляем частотой вращения синхронного двигателя переменного тока

Доброго всем времени суток!

Как-то решая задачу по автоматизации линейного перемещения фрезера (точность позиционирования не требовалась, так как выполнялась черновая обработка) из имеющегося в наличии оборудования пришлось подробно изучать вопрос управления скоростью вращения синхронных маломощных двигателей.

В наличие нашлись редукторы с двигателями на 24В 1450RPM (6Вт) и 230В 375RPM (12Вт).

Механическая доработка редукторов полностью проблему не решило, необходимо было собирать частотник.

Первая попытка управления двигателем на 220В хотя в итоге и была в целом успешная (т.к. двигатель все таки работал), но направление было выбрано в корне неправильное. За основу была взята схема преобразователя 12В -> 220В с управлением от мультивибратора, типа такой:

Соответственно, мультивибратор был доработан, чтобы выдавать 50-100Гц, причем управлять получилось даже 100Вт двигателем (12 В брались от 500Вт-ного компьютерного блока питания). Но все таки данное схемное решение годилось только для проверки возможности работы двигателей на высоких частотах, но не для практического применения.

Самое простое в итоге решение нашлось для 24В двигателя: управляющий генератор был собран на модуле Ардуино УНО, в качестве силового модуля взят ардуиновский модуль для управления коллекторными и шаговыми двигателями L298N, а также взят 24В импульсный блок питания.

Немного сложнее было с написанием подходящей программы для контроллера. Изначально решил для управления получить синус, но на практике самым действенным оказалось использование обычных прямоугольных импульсов. Программа, приведенная ниже, с небольшой доработкой позволяет регулировать площадь прямоугольника в зависимости от частоты, что необходимо учитывать особенно при управлении на низких частотах. В демонстрационном варианте для упрощения кода регулировка отдаваемой двигателю мощности не используется. Дискретность изменения частоты выбрана 5 Гц, диапазон регулировки частоты — 40 — 200Гц. При копировании программы необходимо убрать пробелы между символом «# » и ключевым словом, т.к. иначе редактор ДЗЕНа отказывался принимать текст.

# define ENC_A 2 // пин энкодера 1

# define ENC_B 4 // пин энкодера 2

# define ENC_TYPE 1 // тип энкодера, 0 или 1

int koef = 8; // минимальное значение частоты — 40 Гц для шага 5 Гц

int val = 0; // переменная для хранения считываемого значения

const int min_Hz = 16000; //для формирования шага изменения частоты: 16000 — 5 Гц, 8000 — 10 Гц, 3200 — 25 Гц, 1600 — 50 Гц

volatile int number = 0; //вспомогательная переменная для вывода в порт

volatile boolean state0, lastState, turnFlag; //переменные для обработки внешнего прерывания

// Инициализация регистров, смотрите документацию для подробной информации

//настраиваем регистры для формирования ШИМ

ICR1 = int(min_Hz/koef); //начальная частота — 40Гц

DDRB = 0b00000110; // PB1 и PB2 выходные каналы ШИМ

sei(); // Разрешаем глобальные прерывания

encCounter += (digitalRead(ENC_B) != lastState) ? -1 : 1; //шаг

encCounter += (digitalRead(ENC_B) != lastState) ? -1 : 1; //шаг

Источник

Регулирование напряжения и частоты синхронного генератора.

Изменяя величину тока в обмотке возбуждения генератора, регулируют его выходное напряжение на статорных обмотках. Регулируя ток в независимой обмотке двигателя, изменяют его скорость вращения, следовательно изменяется частота тока в трёхфазной магистрали.

Читайте также:  Регулировать ступицу колеса у нивы

Напряжение и частоту регулируют электронные блоки БУП и БРЧ воздействующие на тиристоры Тт1, Тт2.

В систему регулирования входит так же выпрямитель Д8-Д12.

И1-И2-Тт1

1. Фаза С2-Д9-Д12- H1-H2-Тт2 -Д10-ФазаС1

И1-И2-Тт1

2. Фаза С3-Д11-Д12- H1-H2-Тт2 – Д8-ФазаС2

3. Фаза С1 заперта диодом Д10 в этот момент запирается Тт1 и Тт2, а обмотки И1-И2 и Н1-Н2 под действием ЭДС самоиндукции замыкаются через обратные диоды Д5 и Д7.

Время открытия тиристоров определяют блоки БУП и БРЧ. Его изменения меняет ширину импульсов напряжения, а следовательно, среднее значение токов подаваемых в обмотки возбуждения И1-И2; Н1-Н2.

При пуске преобразователя предусмотрено первоначальное подмагничивание обмотки И1-И2 от батареи.

Одновременно с включением контактора КП поступает питание на вход «регулятор» блока БУП. Это обеспечивает подачу сигналов на управляющий электрод тиристора Тт1. По мере увеличения оборотов преобразователя растет напряжение генератора и питание обмотки И1-И2 осуществляется от генератора через Тт1. Включаются контакторы БК и КГ отключая цепь первоначального возбуждения.

При пуске двигатель преобразователя имеет последовательное возбуждение. При наборе оборотов блок БРЧ начинает управлять тиристором Тт2, и появляется ток, а следовательно и магнитный поток в независимой обмотке возбуждения Н1-Н2.

Для защиты элементов схемы регулирования от перенапряжений, возникающих на обмотке Н1-Н2 в переходных режимах, служит тиристорный ограничитель (тиристор Тт3, резистор R21, стабилитроны ПП2-ПП4). При наведении в обмотке напряжения более нормы открываются стабилитроны и тиристор Тт3, что приводит к шунтированию обмотки Н1-Н2 и ограничению напряжения.

Защитные резисторы R15, R12 и конденсаторы С4 иС10 снимают коммутационные перенапряжения с тиристоров Тт1 и Тт2 и моста Д8-Д12. Стабилизирующий трансформатор ТрС (в минусовой цепи двигателя преобразователя) образует обратную связь, устраняя автоколебания возможные в системе регулирования.

Управление компрессорами.

Компрессора находятся под прицепными и головными вагонами и включаются под контролем регуляторов давления находящихся в головной и хвостовой кабинах.

Для пуска трехфазного асинхронного двигателя используется трехфазный контактор «К» подключающий переменное напряжение 220В к двигателю компрессора по проводам 81, 82, 83.

Цепь включения контактора компрессора:

Реле РЗП1 блокировкой 27-27А не дает включится компрессорам, если началось электрическое торможение с независимым возбуждением. Собственный контакт К (27-27Б) шунтирует блокировку РЗП1, и катушка К встает на самоподхват. Если компрессор работает до начала торможения, то он будет продолжать работать. Блокировка ПКП позволяет включить компрессор только после окончания пуска преобразователя.

Все фазы защищены тепловыми реле Тр5 и Тр6, а так же предохранителями Пр15 и Пр16. Предохранитель в третьей фазе не устанавливается так, как в случае КЗ в любых фазах один из предохранителей обязательно попадет в аварийный контур (т.к. соединение обмоток статора выполнено по схеме «звездой» КЗ возможно только между любыми двумя фазами). Между проводами 81 и 83 через Д19 и Д20 резисторы R10 и R9 включено реле РНК (реле напряжения компрессора). Реле включается в однополупериодную схему и контролирует предохранители Пр15 и Пр16. При их перегорании, срабатывании теплового реле и других неисправностях в магистрали переменного тока РНК отключится.

Источник

Adblock
detector