Меню

Регулировать частоты вращения дпт



Регулирование частоты вращения дпт

Возможные способы регулирования частоты вращения двигателя постоянного тока вытекают из выражения для скоростной характеристики

Таким образом, возможны следующие способы, регулирования частоты вращения двигателя постоянного тока -1) изменением падения напряжения в цепи якоря двигателя;

-2) изменением магнитного потока машины(производится с помощью регулировочного реостата в цепи возбуждения Rpe);

-3) изменением подводимого к двигателю напряжения.

Регулирование частоты вращения двигателя постоянного тока изменением падения напряжения в цепи якоря.

Данный способ предполагает включение в цепь якоря регулировочного реостата. Регулировочный реостат имеет несколько ступеней. Величина сопротивления реостата определяет новую частоту вращения двигателя.

Регулировочный реостат рассчитывается на длительный режим работы.

В реостате имеют место большие потери мощности, поэтому данный способ применяют в двигателях небольшой мощности.

ДОСТОИНСТВА: Простота регулирования

Данный способ не является экономичным.

Регулирование частоты вращения двигателя постоянного тока изменением значения магнитного потока

Обмотка возбуждения двигателя рассчитывается таким образом, чтобы в номинальном режиме магнитный поток был максимален.

Для изменения магнитного потока в цепь обмотки возбуждения включается регулировочное сопротивление с помощью которого уменьшают ток возбуждения, а следовательно, и магнитный поток в двигателе.

Уменьшение магнитного потока приводит к возрастанию частоты вращения двигателя.

В цепи возбуждения протекает небольшой ток, поэтому в регулировочном реостате потери мощности небольшие, данный способ является экономичным;

Данным способом можно только увеличивать пн

Регулирование частоты вращения двигателя постоянного тока изменением подводимого напряжения

Это лучший способ регулирования, он позволяет плавно и в широких пределах изменять частоту вращения двигателя

Недостатки: требуется — либо отдельный генератор,

-либо преобразователь напряжения

Это увеличивает массогабаритные показатели и стоимость всей установки

Реверс (изменение направления вращения) дпт

Изменение направления вращения двигателя (реверс) постоянного тока достигается

либо изменением направления тока в обмотке якоря ,

либо изменением направления тока в обмотке возбуждения.

При одновременном изменении направлении токов в обмотках двигателя реверса не произойдёт.

Пользуясь правилом левой руки определяем направление силы, действующей на проводники и направление вращающего момента.

Приборы

Основные сведения о полупроводниковых приборах

— наука, которая изучает:

физические явления в полупроводниковых и электровакуумных приборах,

характеристики этих приборов,

системы и устройства, основанные на их использовании.

В зависимости от среды, в которой протекает электрический ток, электронные приборы подразделяют на 3 основных класса:

Электронные (вакуумные) лампы. В них поток электронов проходит в вакууме.

Ионные (газоразрядные) лампы. В них основными носителями тока являются ионы (как положительные, так и отрицательные), полученные при ионизации газа, заполняющего прибор.

Полупроводниковые приборы. В них ток создается движением двух видов носителей — электронами и дырками в твердом теле полупроводника.

В последние годы получила применение электронная аппаратура, основанная на использовании полупроводниковых приборов, которые по сравнению с вакуумными и газоразрядными имеют следующие преимущества:

Высокая надежность работы.

Полупроводниковые приборы находят широкое применение на железнодорожном транспорте и в современном электрооборудовании и электроприводе, используемом при выполнении строительных работ и работ по управлению движением.

По удельному электрическому сопротивлению вещества подразделяются на три типа.

Источник

Как регулировать обороты двигателя постоянного тока через Arduino

Наверное, каждый пацан в своём детстве разбирал игрушки и нередко находил в них небольшие моторчики. Кто их подключал напрямую к батарейке помнит, что они начинали вращаться, а направление вращения зависело от того какую подать полярность на его клеммы. В простоте регулировки и реверсирования и состоит прелесть электродвигателей постоянного тока (ДПТ).

Вообще, правильное название миниатюрных двигателей — это коллекторный двигатель постоянного тока с постоянными магнитами или модельный электродвигатель. Магниты в них располагаются на статоре и играют роль обмотки возбуждения. Модельными они называются из-за того, что их часто используют в радиоуправляемых моделях.

Регулировка оборотов

Известно, что при подключении такого двигателя к источнику питания он сразу начинает вращаться, а направление его вращения зависит от полярности подключенного напряжения.

При изменении питающего напряжения изменяется ток в обмотках, следовательно изменяется и подводимая мощность и его обороты. Есть два основных способа изменения напряжения на клеммах таких электродвигателей — использовать балластные резисторы для ограничения тока или использовать ШИМ-регулирование.

Балластные резисторы греются, выделяют энергию в виде тепла в воздух – это не эффективно и бесполезно.

Смысл ШИМ-регулирования состоит в подаче импульсов с фиксированной частотой, но изменяющейся шириной. От ширины импульса зависит действующее напряжение на подключенной нагрузке и вычисляется по формуле:

где Uнагр – напряжение на нагрузке, Uпит – напряжение источника питания, k – коэффициент заполнения.

Коэффицент заполнения – то отношение ширины импульса (tимп) к периоду (T), то есть:

На рисунке ниже вы видите, как выглядит питание нагрузки через ШИМ-регулятор при разных коэффициентах заполнения.

Короче говоря,при ШИМ-регулировании питание очень быстро включается и отключается, то есть подаётся импульсами. И чем уже эти импульсы – тем меньшее напряжение доходит до нагрузки.

Для ШИМ-регулирования можно собрать схему на таймере NE555 и других микросхемах либо использовать микроконтроллер.

Семейство плат с микроконтроллером ардуино также способно выдавать ШИМ сигнал, стандартная частота ШИМ у них 500Гц, а если быть точным, то 488,28 Гц. Если вам не принципиальная частота – то можно использовать как есть без сторонних библиотек. Отмечу, что для большинства применений этого достаточно. Не очень хорошо это подходит для регулирования яркости осветительных приборов из-за повышения коэффициента пульсаций светильника и вреда для зрения в итоге.

Читайте также:  Лифан солано регулировка тросов кпп

Обратите внимание на иллюстрацию, приведенную выше. Из неё мы видим микроконтроллер Atmega328, который лежит в основе этих плат выдаёт ШИМ-сигнал только на выходах 3, 5, 6, 9, 10, 11, которые обычно помечены знаком «

» плате, а на картинках с распиновками сокращением «PWM».

Подключение к Arduino

Напрямую к порту ардуино подключать нагрузку для диммирования нельзя, так как он может выдать всего 20 мА. То есть напрямую к порту можно подключать отдельные маломощные 5-мм светодиоды, во всех остальных случаях – используйте транзистор. В последнем случае максимальная нагрузка зависит от типа транзистора.

Как мы уже определились ШИМ у нас выдают только пины с номерами 3, 5, 6, 9, 10, 11. Значит, к ним и будем подключать нагрузку. В качестве транзистора предлагаю использовать полевой транзистор (MOSFET) IRF840 – он N-канальный со встроенным обратным диодом для защиты от всплесков противо-ЭДС, его характеристики:

  • Предельно допустимое напряжение сток-исток (Uds): 500 V
  • Предельно допустимое напряжение затвор-исток (Ugs): 20 V
  • Пороговое напряжение включения Ugs(th): 4 V
  • Максимально допустимый постоянный ток стока (Id): 8 A

Можно использовать и другие транзисторы с логическим уровнем включения затвора ( Ugs(th) до 5В), в противном случае придется использовать драйвер или промежуточный транзистор для его открытия.

Кроме транзистора нам нужно 2 резистора — первый между выходом платы и затвором на 240 Ом (если его у вас нет – возьмите соседние номиналы) для ограничения тока заряда затворной ёмкости, так мы снизим вероятность выхода из строя порта и просадок по питанию. Второй резистор на 10-12 кОм подключим между затвором и землёй. Он нужен для того, чтобы затвор не висел в воздухе, а также разряда затворной ёмкости и ускорения закрытия полевика. Схему подключения вы видите ниже.

Чтобы задавать обороты, добавим в схему потенциометр, его подключим к аналоговому входу так, как мы делали это в прошлых статьях о сервоприводах и шаговых двигателях .одключение по

Соберем эту схему.

Для ШИМ в родной библиотеке Arduino IDE есть специальная функция — analogWrite (pin, value), в ней pin – номер порта, на который нужно выдавать сигнал, а value – его величина от 0 до 255. То есть при значении value равном 255 коэффициент заполнения на выходе будет равен 1, т.е. будет непрерывный сигнал на входе, а при 127 — почти 50%.

Для нашего эксперимента достаточно простенького кода, который вы видите далее.

int pot = A1; // назначаем вход А1 для чтения сигнала с потенциометра

int motor = 5; // к этому выходу подключаем затвор полевого тразнистора

analogWrite(motor, map (analogRead(pot), 0, 1023, 0, 255));

Функция map, которая используется в качестве второго аргумента функции analogWrite позволяет сократить код на несколько строчек. Её назначение преобразовать одни размерности в другие. Чтобы понять, как она работает рассмотрим её синтаксис:

map(value, fromLow, fromHigh, toLow, toHigh),

где: value – откуда брать величину, в приведенном выше примере мы её считываем функцией analogRead с пина, объявленного в переменной pot (это А1), fromLow – минимальное значение, которое будет участвовать в преобразовании (у нас это 0), fromHigh – максимальное значение для преобразования (у нас это 1023, потому что это максимальное значение, которое «видит» ардуина при чтении аналогового сигнала), toLow – в какое значение преобразовывать минимальное значение со входа, toHigh – в какое значение преобразовывать максимальное значение со входа (у нас это 255, потому что это максимальное число, которое можно записать в analogWrite).

То есть мы получаем любое число от 0 до 1023, а функция возвращает число от 0 до 255. Таким образом, у нас происходит преобразование, в общем-то, с сохранением величины в процентах (комментаторов прошу подсказать, как правильно назвать такое преобразование).

Заключение

ШИМ-регуирование с помощью ардуино реализуется достаточно просто. Оно с лёгкостью может использовать в самодельных радиоуправляемых моделях или роботах, а также для регулировки яркости каких-либо индикаторов и создания световых эффектов. Повторюсь, что для диммирования светильников и светодиодных лент он не очень хорошо подходит из-за низкой частоты.

Также отмечу, что при питании платы от одного источника питания, а нагрузки от другого, например, с большим напряжением, следует соединить их «минусы», иначе транзистор включаться не будет.

Ну и прилагаем видео, в котором иллюстрируется работа схемы рассмотренной в статье

Источник

Основные сведения. Способы регулирования частоты вращения электродвигателей постоян-

Ного тока

Способы регулирования частоты вращения электродвигателей постоян-

Рассмотрим способы регулирования частоты вращения электродвигателей постоян-

ного тока на примере электродвигателя с независимым ( параллельным ) возбуждением.

Уравнение естественной механической характеристики двигателя имеет вид

ω = ,

где ω – угловая скорость якоря;

U – напряжение на обмотке якоря;

.k – постоянный коэффициент;

Ф – магнитный проток обмотки ( обмоток ) возбуждения;

М – электромагнитный момент электродвигателя;

R— cопротивление обмотки якоря электродвигателя.

Из уравнения следует, что скорость двигателей с независимым ( параллельным )

Читайте также:  Электрокран печки на ниву с регулировкой

возбуждением можно регулировать тремя способами:

1. изменением напряжения на обмотке якоря двигателя U;

2 изменением сопротивления цепи обмотки якоря R;

3. изменением магнитного потока полюсов Ф.

Первый способ регулирования – изменением напряжения на обмотке якоря, приме

няется только для двигателей с независимым возбуждением в т.н. «системах генератор – двигатель» ( см. ниже ).

Второй способ – изменением сопротивления цепи обмотки якоря, на практике осуществляется путем введения добавочных резисторов последовательно с обмоткой якоря.

Этот способ позволяет изменить скорость двигателя только вниз от основной, при

чем с увеличением сопротивлений скорость двигателя умень­шается. Это объясняется уве-

личением падения напряжения в до­бавочных резисторах и уменьшением напряжения на зажи­мах якоря.

Положительное качество данного способа регулирования — его простота, т.к. он осуществляется путем введения ( выведения ) ступеней регулировочного реостата в цепь обмотки якоря двигателя.

Основным недостатком способа является большой расход энергии в добавочных

Этот способ применяется в электроприводах грузоподъемных механизмов и якор-

но-швартовных устройств на постоянном токе.

Третий способ – изменением магнитного потока полюсов, на практике осуществля-

ется путем введения добавочных резисторов последовательно с параллельной обмоткой возбуждения. При этом магнитный поток возбуждения уменьшается, а скорость якоря увеличивается.

Скорость двигателей, специально сконструированных для работы с регулируемым потоком, может превышать номинальную в три раза и более, скорость остальных двигате-

лей повышается на 10 — 20 %. Верх­ний предел скорости ограничен условиями коммута-

ции, механи­ческой прочности или нагревом двигателя.

Положительное качество данного способа регулирования — его экономичность,

т.к. расход электроэнергии в регулировочном резисторе мал из-за небольшого значения тока возбуждения в цепи параллельной обмотки.

Основными недостатками способа являются возможность регулирования скорости только вверх от номинальной, а также увеличение тока якоря во столько раз, во сколько раз ослаблен магнитный поток.

Последняя особенность не позволяет применять этот способ регулирования при ра-

боте электропривода с номинальным моментом, т.к. при ослаблении потока ток якоря пре

высит номинальный, что недопустимо.

Поэтому этот способ регулирования применяется в электроприводах грузоподъем-

ных механизмов и якорно-швартовных устройств для получения высоких скоростей при перемещения холостого гака ( грузовые лебедки и краны ) или швартовного каната ( бра-

шпили, шпили ), т.е. при небольшой нагрузке на валу электродвигателя.

2.2. Регулирование скорости в системе «генератор – двигатель» ( Г – Д )

Система Г-Д как минимум состоит из трех электрических машин:

1. исполнительного электродвигателя М2, приводящего в действие механизм;

2. генератора G1, питающего исполнительный ЭД;

3. приводного электродвигателя Ml, вращающего якоря генератора G1 и образую-

щего с ним так называемый преобразователь.

Машины М2 и G1 — постоянного тока с независимым возбуждением.

Несмотря на это, система Г-Д может применяться при любом роде тока питающей сети.

Если сеть постоянного тока, то в качестве приводного двигателя М1 применяют ЭД параллельного возбуждения, а обмотки возбуждения всех машин получают питание от сети.

Если сеть переменного тока, используют асинхронный приводной ЭД. Для питания обмоток возбуждения L1G1 и LM2 в этом случае применяют четвертую машину – возбуди

тель G2. Это небольшой генератор постоянного тока с самовозбуждением. Он приводится во вращение тем же приводным электродвигателем М1 , что и генератор G1 ( рис. 9.3 ).

Рис. 9.3. Схема системы генератор – двигатель

Система действует следующим образом.

Сначала пускают приводной ЭД М1, якорь которого затем вращается постоянно в одну сторону с неизменной скоростью. Потом при помощи регулировочного резистора

( реостата возбуждения ) RP3 возбуждают возбудитель G2, создающий неизменное напря-

От него получают питание независимые обмотки возбуждения исполнительного электродвигателя LM2 и генератора L1G1.

В цепь первой включен регулировочный резистор RP2, в цепь второй – регулиро-

вочный резистор RP1 и переключатель SA, изменяющий направление тока в обмотке L1G1.

Перед пуском резистор RP1 должен быть полностью введен в цепь, а резистор RP2 — выведен.

Для пуска М2 переключатель SA устанавливают в одно из рабочих положений и

постепенно выводят резистор RP1, увеличивая этим ток возбуждения в обмотке L1G1.

Последний возбуждается и подает плавно возрастающее напряжение на якорную обмотку М2. По цепи якорей G1 и М2 протекает ток.

Так как М2 возбужден, его якорь начинает вращаться, и по мере возрастания напря-

жения, подве­денного к его якорю, увеличи­вается угловая скорость. При полностью выве-

денном резисторе RP1 напряжение G1 и угловая скорость М2 номинальные.

Для реверса переключателем SA изменяют направление тока в обмотке возбужде-

ния L1G1. Генератора изменяет полярность напряжения, ток якорной цепи изменяет на-

правление, и исполнительный двигатель М2 реверсируется.

Регулирование скорости вниз от номинальной выполняют, вводя в цепь обмотки возбуждения L1G1 регулировочный резистор RP1. Ток возбуждения, магнитный поток и напряжение генератора уменьшаются. Вследствие этого снижается напряжение, подведен­ное к обмотке якоря М2, и его угловая скорость уменьшается ( характеристики 3, 2 и 1 на

Регулирование скорости вверх от номи­нальной осуществляют, вводя в цепь обмот-

ки возбуждения М2 регулировочный резистор RP2, что уменьшает ток и поток воз­бужде-

ния, при этом скорость ЭД увеличивается ( характеристики 5, 6 и 7 на рис. 9.4 ).

Рассмотренная система называется «система Г – Д в чистом виде» и на практике не применяется. Это объясняется тем, что при работе с номинальным напряжением на якоре М2 внезапная остановка этого якоря ( например, под винт попала льдина ) приводит к рез-

Читайте также:  С чего начинают регулировку тормозной рычажной передачи

кому увеличению тока якорей двигателя М2 и генератора G1 до значения, равного пуско-

Рис. 9.4. Механические характеристики исполнительного двигателя

в системе генератор – двигатель: 4 – естественная; 3, 2 и 1 – искусственные, полученные уменьшение напряжения на обмотке якоря М2; 5, 6 и 7 –искусствен-

ные, полученные ослаблением магнитного потока М2

Кроме того, такое увеличение тока приводит к увеличению нагрузки на приводной двигатель генератора. Это особенно опасно, если генератор G1 приводится во вращение дизелем. Как известно, дизели крайне чувствительны к перегрузкам ( не более 10% мощ-

ности в течение 1 часа ).

Поэтому на судах применяют систему Г-Д с противокомпаундным генератором. Она отличается от системы Г-Д в чистом виде тем, что генератор, помимо независимой обмотки возбуждения L1G1, снаб­жен еще одной обмоткой возбуждения – противоком-

паундной обмоткой L2G1, включенной последовательно в цепь якоря G1 и выполняющей функции жесткой обратной связи по току ( на рис. 9.3 место включения обмотки L2G1 по

казана при помощи стрелок, т.е. последовательно в цепь главного тока ).

Ее намагничивающая сила Fнаправлена встречно намагничивающей силе Fоб-

мотки независимого возбуждения L1G1, т. е. она действует на генератор размагничиваю-

Общий магнитный поток возбуждения гене­ратора создается разностью намагничи-

вающих сил обеих обмоток.

При нормальной нагрузке намагничивающая сила обмотки L1G1 значительно боль

ше, чем обмотки L2G1, и генератор развивает ЭДС, как в обычной системе Г-Д.

При перегрузке разность намагничивающих сил обмоток уменьшается, магнитный поток и ЭДС генератора снижаются, напряжение, подведенное к ЭД, падает, и угловая скорость ЭД становится меньше.

При остановке якоря исполнительного двигателя М2 ЭДС генератора G1 настолько уменьшается, что ток стоянки оказывается в пределах кратковре­менно допустимого, обыч

но равного ( 2,2…2,5) I.

Система Г-Д обладает исключительно хорошими регулиро­вочными свойствами и позволяет регулировать скорость в пределах 1 : 30. Регулирование получается плавным, так как из-за срав­нительно небольших токов возбуждения можно сделать регули­ровочные резисторы с большим количеством ступеней.

Систему Г – Д применяют в электроприводах мощностью более 75…80 кВт – тя-

желовесных лебедках и кранах, брашпилях, а также на судах с ГЭУ для привода гребного винта.

Существенный недостаток системы Г — Д – большое количество установленных эле

Развитие полупроводниковой техники позволило перейти от рассмотренной систе-

мы Г – Д к т.н. системам «управляемый вентильный преобразователь – двигатель», или, сокращенно, системам УВП – Д ( рис. 9.5 ).

2.3. Регулирование скорости в системе двойного рода тока ( УВП – Д )

В таких системах исполнительный двигатель постоянного тока получает питание от судовой сети через управляемый вентильный преобразователь ВП ( рис. 9.5 ).

Рис. 9.5. Структурная схема тиристорного электропривода постоянного тока

В качестве вентилей используются управляемые полупроводниковые диоды – тиристоры.

В общем случае такой электропривод состоит из следующих основных элементов:

1. силовой трансформатор Тр;

2. вентильный преобразователь ВП;

3. сглаживающий фильтр СФ;

4. электродвигатель М;

5. система управления СУ.

Силовой трансформатор Тр служит для согласования номинального напряжения двигателя с выходным напряжением преобразователя.

Вентильный преобразователь выпрямляет напряжение и регулирует его в нужных

пределах. Для питания цепей якоря двигателя применяют однополупериодные схемы с нулевым выводом ( рис. 9.6, а ) или двухполупериодные мостовые схемы ( рис.9.6., б ).

Рис. 9.6. Схемы включения якоря двигателей постоянного тока на вентильный преобразователь: с нулевым выводом ( а ); мостовая ( б )

В таких схемах обмотки возбуждения двигателей обычно получают питание от об-

щей сети переменного тока через маломощные однофазные выпрямители.

Сглаживающий фильтр ( дроссель Др на рис.9.6 ) предназначен для уменьшения пульсаций выпрямленного напряжения. При этом улучшаются условия коммутации и уменьшается нагрев обмотки якоря двигателя.

Система управления СУ изменяет угол отпирания тиристоров α. Вследствие чего изменяется выпрямленное напряжение на якоре исполнительного двигателя, а значит, и его скорость

При этом, при малых скоростях якоря этот угол близок к 90º, а для разгона якоря

СУ непрерывно уменьшает этот угол. При номинальном ( наибольшем ) напряжении на якоре угол α = 0º.

Механические характеристики двигателя при разных значениях угла отпирания тиристоров α приведены на рис. 9.7.

Они подобны механическим характеристикам исполнительного двигателя в систе-

ме Г – Д ( рис. 9.4 ).

Рис. 9.7. Электромеханические характеристики двигателя при разных значениях угла α

На рис. 9.7 штриховой линией показана граница между режимами непрерывного

( справа от пунктирной линии ) и прерывистого ( слева от этой линии ) токов якоря двига-

Электромеханические характеристики имеют такие особенности:

1. при уменьшении угла отпирания тиристоров от α = π / 2 = 90º ( характеристика

2 ) до α= 0º ( характеристика 7 ) скорость двигателя увеличивается, двигатель работает в двигательном режиме;

2. при увеличении угла α свыше 90º ( характеристика 1 ) ток якоря двигателя не

изменяет направление, но двигатель реверсирует и переходит в режим тормозного спуска.

при котором электромагнитный момент двигателя, направленный на подъем, ограничива-

ет скорость спуска тяжелого груза или судового якоря с якорь-цепью.

Источник