Меню

Как свет регулирует жизнь растений



Как влияет свет на развитие растений?

Вы когда-нибудь использовали лампы для выращивания ваших растений? Если это так, то Вы, вероятно, были поражены влиянием света на их развитие. Эта статья расскажет Вам гораздо больше о влиянии света на развитие растений. Как мы увидим, развитие растений действительно отличается от роста растений. Мы объясним Вам принципы работы света и его взаимодействия с растениями, а также дадим несколько практических советов. Выбор правильной лампы может иметь огромное значение для качества и количества вашего урожая.

Все знают, что растение нуждается в свете, чтобы расти посредством фотосинтеза, процесса, который включает фиксацию энергии и производство сахара. Но помимо обеспечения энергией, свет также играет ключевую роль во многих других растительных процессах, таких как фотоморфогенез и фотопериодизм. На все эти процессы влияет световой спектр, то есть распределение света по электромагнитному спектру. Чтобы объяснить различные реакции растений на свет, нам сначала нужно подумать о самом явлении света.

Принцип света и его спектр

Свет в форме электромагнитных волн описывается электромагнитным спектром. Наиболее важным качеством света для растений является его длина волны или содержание энергии; чем короче длина волны, тем выше содержание энергии.

Когда мы описываем электромагнитный или световой спектр, лучше говорить о длине волны, чем о цвете. Это связано с тем, что видимый свет для человека составляет лишь небольшую часть светового спектра в целом, а именно диапазон длин волн от 400 до 700 нанометров (Нм, что составляет 10-9 м).

Как видно из рисунка 1, это очень маленький диапазон. На самом деле, это составляет менее 1 процента от общего спектра. Фотосинтетически активное излучение, или плотность потока фотосинтетических фотонов (ППФФ), — это диапазон света, который может быть использован растениями для фотосинтеза. Однако, поскольку ППФФ является суммированием всех фотонов в диапазоне 400-700 Нм, два очень разных спектральных распределения могут иметь один и тот же ППФФ. Это означает, что между ППФФ и спектральным распределением нет однозначной связи. Это также означает, что при сравнении источников света мы должны учитывать данные спектрального распределения, а также ППФФ.

ППФФ свет выражается в мкмоль /м2 / С и говорит нам, сколько световых фотонов достигнет заданной площади поверхности (m 2 ) в заданный промежуток времени (секунда). Для иллюстрации: большинству растений требуется минимум 30-50 мкмоль /м2 / с ППФФ, чтобы оставаться в живых.

Как растение чувствует свет

Свет не только обеспечивает фотосинтез энергией, но и служит источником информации для растений. Различные световые спектры дают растению представление об окружающей среде и, следовательно, о том, как оно должно выживать и, надеюсь, процветать и размножаться. В этом смысле состав света так же важен, как и общее количество света, используемого для фотосинтеза. Световой спектр в диапазоне от 300 до 800 Нм вызывает реакцию развития растения. Кроме того, известно, что ультрафиолетовый и инфракрасный (ИК) свет играет определенную роль в морфогенезе растений.

Растение получает информацию от света, который достигает его с помощью специальных пигментов, называемых фоторецепторами. Эти фоторецепторы чувствительны к различным длинам волн светового спектра.

Рисунок 2: растение получает информацию от света через три специальных фоторецептора: фототропины (фототроп), криптохромы и фитохромы. Первые два активны в ультрафиолетовом и синем свете, в то время как фитохромы реагируют на красный и Дальний красный свет.

Существует три группы фоторецепторов, см. Рисунок 2:

Первые два фоторецептора – фототропины и криптохромы-активны в нижнем диапазоне длин волн (УФ (А) и синий). Очевидно, что эти два рецептора выполняют разные функции. Фототропины отвечают за фототропизм или движение растений, а также за движение хлоропластов внутри клетки в ответ на количество света. Фототропины-это то, что заставляет стебли изгибаться к свету и раскрываться устьице.

Криптохромы — это пигменты, которые чувствуют направление света. Ингибирование удлинения стебля регулируется криптохромами, а также функционированием устьиц, синтезом пигментов и отслеживанием солнца листьями растений. Другие фоторецепторы-фитохромы-чувствительны к красному и Дальнему красному свету. Существуют две формы фитохрома, Pfr и Pr, которые взаимодействуют между собой. Наибольшее влияние на фотоморфогенез оказывают фитохромы. Удлинение стебля, избегание тени, синтез хлорофилла и реакция цветения-все эти функции обычно контролируются фитохромом.

Теперь, когда мы рассмотрели спектр света и фоторецепторы, ответственные за развитие растений, мы приходим к следующему вопросу: как мы можем применить эти знания в садоводстве? Что делает хороший спектр света для выращивания? Чтобы ответить на этот вопрос, нам нужно подумать о реакции растения на различные спектры света. Поскольку они попадают в основном под видимый свет, мы можем говорить о «цветах», начиная с самых важных для развития растений.

Синий свет (400-500 Нм)

Большая доля синего света оказывает тормозящее действие на удлинение клеток, что приводит к укорочению стеблей и утолщению листьев. И наоборот, уменьшение количества синего света приведет к увеличению площади поверхности листьев и удлинению стеблей. Слишком мало синего света негативно скажется на развитии растений. Многие растения нуждаются в минимальном количестве синего света, которое колеблется от 5 до 30 мкмоль/м2 /С для салата и перца до 30 мкмоль/м2 /С для сои.

Взаимодействие красного (600-700 Нм) и дальнего красного (700 – 800 Нм) света

Поскольку красный и Дальний красный свет имеют более высокую длину волны, они менее энергичны, чем синий свет. В сочетании с глубоким влиянием индуцированных красным цветом фитохромов на морфогенез растений для развития растений требуется относительно больше красного и дальнего красного света.

Читайте также:  Регулировка яркости в светодиодных драйверах

Две формы фитохрома, Pfr и Pr, играют важную роль в этом процессе. Поскольку красный и Дальний красный свет присутствуют в солнечном свете, растения в природе почти всегда будут содержать как ПФР, так и фитохромы. Растение воспринимает окружающую среду по соотношению между этими двумя формами; это называется фотостационарным состоянием фитохрома.

Фитохром Pr имеет пик поглощения света на длине волны 670 Нм. Когда Pr поглощает красный свет, он преобразуется в форму Pfr. Форма Pfr действует наоборот – когда она поглощает далекий красный свет на пике 730 Нм, она преобразуется в форму Pr. Однако, поскольку молекулы Pfr также могут поглощать красный свет, некоторые из молекул Pfr преобразуются обратно в Pr. Из-за этого явления нет линейной зависимости между фотостационарным состоянием фитохрома и отношением красного к дальнему красному. Например, когда отношение красного к дальнему красному свету превышает два, в фотостационарным состоянием фитохрома практически нет реакции, и поэтому развитие растений не влияет. Поэтому лучше говорить о фотостационарным состоянием фитохрома, чем о соотношении красного и дальнего красного света.

Количество Pr и Pfr говорит растению, какой свет оно получает. Когда присутствует много Pr, это означает, что растение получает больше далекого красного света, чем красный свет. Когда красный свет меньше, противоположное преобразование (от Pr к Pfr) затруднено, что означает, что есть относительно больше Pr.

Рисунок 3: поскольку дальний красный свет в основном отражается от поверхности листьев, растение получает (относительно) больше этого света, когда оно заполнено соседними растениями. Чтобы избежать тени, растение отрастает более длинные стебли, так что он может поймать больше света.

В средах, в которых многие растения растут близко друг к другу, весь красный свет от солнца используется для процесса фотосинтеза (между 400 и 700 Нм), и большая часть дальнего красного света отражается растениями (>700 Нм). Большинство растений, особенно те, что находятся в тени, получат в этой ситуации гораздо больше красного, чем красный свет. Как следствие, Pr увеличивается, и когда это происходит, растение чувствует, что ему нужно больше света для фотосинтеза и удлинения стебля запускается (см. Рисунок 3). В результате получаются более высокие растения с большим расстоянием между междоузлиями и более тонким стеблем. Это явный пример реакции избегания тени, когда растения стремятся захватить больше света, чтобы выжить.

Более высокие растения могут поглощать больше красного света, что увеличивает количество форм ПФР. Это вызовет большее ветвление, меньшее расстояние между междоузлиями и меньший вертикальный рост, чтобы максимизировать поглощение света для фотосинтеза. В результате растения тратят меньше энергии на выращивание как можно более высоких растений и выделяют больше ресурсов на производство семян и расширение их корневой системы.

Влияние светового спектра на цветение

На цветение также влияют формы Pr и Pfr. Продолжительность времени, в течение которого ПФР является преобладающим фитохромом, — это то, что заставляет растение цвести. В основном, уровни ПФР говорят растению, как долго длится ночь (фотопериодизм). Когда солнце садится, количество далекого красного света превышает количество красного света. В темноте ночи формы ПФР медленно превращаются обратно в Pr. Долгая ночь означает, что есть больше времени для этого обращения. Следовательно, в конце ночного периода концентрация ПФР будет низкой, и это приведет к тому, что короткодневные растения зацветут.

Ограниченное влияние зеленого света (500-600 Нм) на развитие растений

Часто предполагается, что только синий и красный свет помогают растениям расти и развиваться, но это не совсем верно. Хотя большая часть зеленого света отражается от поверхности растения (именно поэтому мы, люди, видим растения зелеными), сам зеленый свет также может быть полезен для растения. Сочетание различных световых оттенков может привести к более высокому фотосинтезу, чем сумма его частей. Исследования, проведенные на листьях салата, также показали, что рост растений и биомасса увеличивались при добавлении 24% зеленого света к красно-синему светодиоду при сохранении равного уровня PAR (150 мкмоль/м2/ s) между двумя объектами. Это указывает на то, что даже зеленый свет может оказывать положительное влияние на рост растений.

Ультрафиолетовый свет (300-400 Нм)

Ультрафиолетовое излучение также оказывает влияние на растения, вызывая компактный рост с короткими междоузлиями и маленькими толстыми листьями. Однако слишком большое количество ультрафиолетового излучения вредно для растений, так как оно отрицательно влияет на ДНК и мембраны растения. Фотосинтез может быть затруднен слишком большим количеством ультрафиолетового излучения. Исследования показывают, что это происходит при значениях УФ-излучения выше 4 кДж/м2 /сут.

Вывод

Это возвращает нас к общему вопросу » что создает хороший спектр света для роста?»Довольно трудно дать общий ответ на этот вопрос, так как он в значительной степени зависит от типа растения и требований выращивания. Для «нормального» развития растений эти спецификации рекомендуются:

· Большинство растений нуждается в минимальном количестве 30-50 мкмоль/м2 /с фотосинтетического света, чтобы остаться в живых

· Требуется минимальное количество синего света, которое варьируется от 5 до 30 мкмоль / м2 /с

· Требуется несколько большая доля красного и дальнего красного света, по сравнению с синим светом

Читайте также:  Ключ для регулировки вилки

· Ограниченное количество ультрафиолетового излучения, менее 4 кДж/м2 /сут.

· Далекий красный свет в одиночку не регулирует цветение

· Зеленый свет благоприятен для фотосинтеза, хотя и не влияет на цветение или развитие растений

Источник

Свет и его роль в жизни растений и животных.

Живая природа не может существовать без света, так как солнечная радиация, достигающая поверхности Земли, является практически единственным источником энергии для поддержания теплового баланса планеты, создания органических веществ фототрофными организмами биосферы, что в итоге обеспечивает формирование среды, способной удовлетворить жизненные потребности всех живых существ.

Биологическое действие солнечного света зависит от его спектрального состава, продолжительности, интенсивности, суточной и сезонной периодичности.

Солнечная радиация представляет собой электромагнитное излучение в широком диапазоне волн, составляющих непрерывный спектр от 290 до 3 000 нм. Ультрафиолетовые лучи (УФЛ) короче 290 нм, губительные для живых организмов, поглощаются слоем озона и до Земли не доходят. Земли достигают главным образом инфракрасные (около 50% суммарной радиации) и видимые (45%) лучи спектра. На долю УФЛ, имеющих длину волны 290—380 нм, приходится 5% лучистой энергии. Длинноволновые УФЛ, обладающие большой энергией фотонов, отличаются высокой химической активностью. В небольших дозах они оказывают мощное бактерицидное действие, способствуют синтезу у растений некоторых витаминов, пигментов, а у животных и человека — витамина D; кроме того, у человека они вызывают загар, который является защитной реакцией кожи. Инфракрасные лучи длиной волны более 710 нм оказывают тепловое действие.

В экологическом отношении наибольшую значимость представляет видимая область спектра (390—710 нм), или фотосинтетически активная радиация (ФАР), которая поглощается пигментами хлоропластов и тем самым имеет решающее значение в жизни растений. Видимый свет нужен зеленым растениям для образования хлорофилла, формирования структуры хлоропластов; он регулирует работу устьичного аппарата, влияет на газообмен и транспирацию, стимулирует биосинтез белков и нуклеиновых кислот, повышает активность ряда светочувствительных ферментов. Свет влияет также на деление и растяжение клеток, ростовые процессы и на развитие растений, определяет сроки цветения и плодоношения, оказывает формообразующее воздействие.

Световой режим любого местообитания зависит от его географической широты, высоты над уровнем моря, состояния атмосферы, растительности, сезона и времени суток, солнечной активности и т. д. Поэтому разнообразие световых условий на нашей планете чрезвычайно велико: от таких сильно освещенных территорий, как высокогорья, пустыни, степи, до сумеречного освещения в водных глубинах и пещерах. В разных местообитаниях различаются не только интенсивность света, но и его спектральный состав, продолжительность освещения, пространственное и временное распределение света разной интенсивности и т.д. Соответственно, разнообразны и приспособления растений к жизни при том или ином световом режиме.

Экологические группы растений по отношению к свету. По отношению к количеству света, необходимого.для нормального развития, растения подразделяют на три экологические группы.

Светолюбивые, или гелиофиты, с оптимумом развития при полном освещении; сильное затенение действует на них угнетающе. Это растения открытых, хорошо освещенных местообитаний: степные и луговые травы, прибрежные и водные растения (с плавающими листьями), большинство культурных растений открытого грунта, сорняки и др.

Тенелюбивые, или теневые, с оптимальным развитием в пределах 1/10—1/3 от полного освещения, т.е. для них приемлемы области слабой освещенности. К тенелюбам относятся растения нижних затененных ярусов сложных растительных сообществ — темнохвойных и широколиственных лесов, а также водных глубин, расщелин скал, пещер и т.д.

Теневыносливые растения имеют широкую экологическую амплитуду выносливости по отношению к свету. Они лучше растут и развиваются при полной освещенности, но хорошо адаптируются и к слабому свету. К ним относится большинство видов зоны смешанных лесов — ель, пихта, граб, бук, лещина, бузина, брусника, ландыш майский и др.

Под влиянием различных условий светового режима у растений выработались соответствующие приспособительные качества. Прежде всего это касается величины листовых пластинок: у гелиофитов по сравнению с теплолюбивыми они обычно более мелкие. Ориентация листьев у светолюбов вертикальная или имеет разный угол по отношению к солнечным лучам, чтобы избежать избыточного света и перегрева. Листья теневыносливых растений, напротив, ориентированы к свету всей поверхностью листовой пластинки и расположены так, чтобы не затенять соседние листья (листовая мозаика).

У многих гелиофитов поверхность листовой пластинки блестящая, покрыта светлым восковым налетом, густо опушена, что способствует отражению палящих солнечных лучей или ослаблению их действия.

Световые и теневые растения имеют четкие различия и по анатомическому строению. Так, у гелиофитов хорошо развиты осевые органы с оптимальным соотношением ксилемы и механических тканей, менее сложные по форме листья с характерной дифференцировкой мезофилла на столбчатый и губчатый, высокой степенью жилкования, большим числом устьиц на единицу поверхности листа. У светолюбивых растений количество хлоропластов, приходящихся на единицу площади листовой пластинки, в несколько раз больше, чем у тенелюбивых. Сами хлоропласты у гелиофитов более мелкие и светлые (с малым содержанием хлорофилла), способные к изменению ориентировки и перемещениям в клетке: на сильном свету они занимают постенное положение и становятся «ребром» к направлению лучей, что защищает хлорофилл от разрушения.

Теневыносливые растения встречаются в местообитаниях с различным световым режимом благодаря увеличению ассимилирующей поверхности, снижению интенсивности дыхания и уменьшению относительной массы нефотосинтезирующих тканей, увеличению размеров хлоропластов и концентрации хлорофилла. Кроме того, в листьях наблюдается слабая дифференцировка на столбчатый и губчатый мезофилл или таковая совсем отсутствует, отмечается сравнительно малое количество устьиц й т.д.

Читайте также:  Как правильно отрегулировать дроссельную заслонку на инжекторе

Фотопериодизм. Огромное влияние на жизнедеятельность растений и животных оказывает соотношение светлого (длина дня) и темного (длина ночи) периодов суток в течение года. Реакция организмов на суточный ритм освещения, выражающаяся в изменении процессов их роста и развития, называется фотопериодизмом. Регулярность и неизменная повторяемость из года в год данного явления позволила организмам в ходе эволюции согласовывать свои важнейшие жизненные процессы с ритмом этих временных интервалов. Под фотопериодическим контролем находятся практически все метаболические процессы, связанные с ростом, развитием, жизнедеятельностью и размножением растений и животных.

По типу фотопериодической реакции (ФПР) различают следующие основные группы растений :

растения короткого дня, которым для перехода к цветению требуется 12 ч светлого времени и менее в сутки (конопля, капуста, хризантемы, табак, рис);
растения длинного дня; для цветения и дальнейшего развития им нужна продолжительность беспрерывного светового периода более 12 ч в сутки (пшеница, лен, лук, картофель, овес, морковь);
фотопериодически нейтральные; для них длина фотопериода безразлична и цветение наступает при любой длине дня, кроме очень короткой (виноград, томаты, одуванчики, гречиха, флоксы и др.).

Фотопериодическая реакция свойственна как растениям, так и животным. Например, цветковые растения переходят от вегетативного к генеративному размножению (цветение и плодоношение) только в том случае, если фотопериод их развития имеет определенную критическую величину. При этом каждому виду свойственен свой критический фотопериод. Оказалось, что растения и животные способны «измерять» его продолжительность с довольно большой точностью. Так, для белены при 22,5 °С критическая длина дня, обеспечивающая цветение, составляет 10 ч 20 мин, но уже при 10-часовом фотопериоде при этой же температуре растение цвести не будет. У сорняка дурнишника пенсильванского необходимая длина дня лежит между 15ч и 15 ч 30 мин. Важно подчеркнуть, что на ФПР заметное влияние оказывают условия среды. Например, при 28,5°С для цветения белены требуется не менее 11,5ч света, в то время как при 15,5°С —лишь 8,5 ч.

Сезонная ритмика у животных наиболее ярко проявляется в смене оперения у птиц и шерсти у млекопитающих, периодичности размножения и миграции, зимних спячках некоторых животных и т. д.

Известно, что наиболее благоприятное время для появления потомства у животных — это время года, когда вокруг достаточное количество корма. Так, яичники и семенники голубя вяхиря начинают созревать, когда продолжительность дня превышает 12 ч, т. е. способности размножаться он, таким образом, достигает к маю. Сизому же голубю для созревания половых желез требуется 9-часовой световой день, поэтому эта птица готова к спариванию 2-3 раза в год. Различие в сроках размножения объясняется тем, что вяхирь питается главным образом зерном поздно созревающих злаков, а сизый голубь —- имеющимися повсюду в изобилии семенами сорняков. В то же время городской голубь обильную пищу находит в уличных отбросах практически в любую пору года, поэтому у него нет предпочтительного времени размножения. Аналогичная ситуация встречается и у других одомашненных животных.

Подобная фотопериодическая регуляция времени появления на свет нового потомства характерна и для большей части млекопитающих. Кроме животных с длиннодневным типом ФПР (наиболее распространенных), встречаются и животные с коротко-дневным типом ФПР. При этом преимущество имеют те, у которых беременность продолжается длительное время, а потомство рождается от весеннего спаривания задолго до наступления осенних холодов. Например, у коз и овец плод развивается 5—6 месяцев, а у оленей и косуль — около 9 месяцев и спаривание происходит в конце лета или осенью. Увеличение размеров половых желез и их полное созревание у них начинаются с наступлением коротких дней. Так, спаривание у косуль происходит в июле-августе, но оплодотворенная яйцеклетка не внедряется в слизистую оболочку матки и не развивается. То и другое совершается лишь во второй половине декабря, и потомство появляется на свет в мае, когда вокруг изобилие свежих зеленых растений. Замедленное внедрение оплодотворенной яйцеклетки наблюдается также у тюленей, медведей, барсука и некоторых сумчатых.

Биологические ритмы характерны и для человека. Суточные ритмы выражаются в чередовании сна и бодрствования, колебаниях температуры тела в пределах 0,7—0,8°С (на рассвете она понижается, к полудню повышается, вечером достигает максимума, а затем снова понижается, особенно быстро после того, как человек заснет), циклах деятельности сердца и почек и т.д.

Таким образом, способность воспринимать длину дня и реагировать на нее широко распространена в мире живых существ. Это означает, что живые организмы способны ориентироваться во времени, т.е. они обладают биологическими часами. Другими словами, для многих организмов характерна способность ощущать суточные, приливные, лунные и годичные циклы, что позволяет им заранее готовиться к предстоящим изменениям среды.

Правильно подобрав режимы освещения, температуры и другие факторы, наиболее соответствующие биоритмам, можно заметно повысить жизнедеятельность и продуктивность разводимых животных и растений, причем без каких-либо дополнительных затрат. Например, благодаря увеличению в теплицах, оранжереях и парниках светового дня до 12—15 ч зимой выращивают овощные культуры и декоративные растения, ускоряют рост и развитие рассады. Продлив за счет искусственного освещения световой период зимой, можно увеличить яйценоскость кур, уток, гусей, регулировать размножение пушных зверей на зверофермах.

Источник

Adblock
detector