Меню

Как отрегулировать драйвер для светодиода



Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Содержание статьи

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Читайте также:  Регулировка кулисы коробки передач шевроле лачетти

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Подробнее про широтно-импульсную модуляцию:

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Устройство диммируемых светодиодных ламп:

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Источник

Как сделать драйвер для светодиода своими руками?

Светодиоды практичны, долговечны, эффективны и экономны. Для стабильной работы этих полупроводниковых приборов необходима подача на их выводы электротока со строго выверенными параметрами. Для этого нужен специальный светодиодный драйвер, своими руками создать который несложно.

Назначение драйверов для светодиодов

Яркость светодиодной лампы зависит от 2 параметров: тока, проходящего через нее, и идентичности характеристик полупроводников, т. к. любое несоответствие выведет детали из строя. Но современное производство не в состоянии обеспечить полностью одинаковые параметры кристаллов.

Нестабильность тока в сети 220 вольт и отличие в характеристиках приводит к деградации материала и сгоранию светодиода. Чтобы избежать этого, ставят драйвер.

Он преобразует электроток:

  • задает ему амплитуду;
  • выпрямляет – делает его постоянным;
  • подает на все элементы одинаковый ток (немного меньше максимального уровня) и не допускает их пробоя.
Читайте также:  Ремонт и регулировка форсунок дизельного топлива

Ключевые особенности

Главное отличие драйвера в том, что при входном напряжении, на которое он рассчитан (например, 140-240 V), он устанавливает на светодиодах заданный уровень тока. При этом потенциал на выходе устройства может быть любым.

Основных характеристик у него 3:

  1. Номинальный ток. Он не должен превышать паспортное значение светодиода, иначе диоды сгорят или будут гореть тускло.
  2. Напряжение на выходе. Зависит от типа подключения полупроводников и их числа. Оно равно произведению падения потенциала 1 элемента на их количество и может меняться в широких пределах.
  3. Мощность. От правильного расчета этой характеристики зависит вся работа устройства. Для этого суммируют мощности всех элементов и добавляют 20-25% (запас на перегрузку).

У светодиодной лампы из 10 элементов по 0,5 Вт этот параметр будет равен 5W. С учетом перегрузки следует выбрать драйвер на 6-7 W.

Но 2 последних параметра (мощность потребления и выходное напряжение) напрямую зависят от спектра излучения светодиода. Например, элементы ХР-Е (красные) при 1,9-2,5 V потребляют 0,75 W, а зеленые – 1,25 W при питании в 3,3-3,9 V. Получается, что драйвер в 10 W способен запитать 7 диодов одного цвета или 12 другого.

Теория питания светодиодных ламп от 220 в

Лед-лампа, лента под потолком или подсветка в современном телевизоре являются совокупностью нескольких мощных небольших светодиодов, размещенных в пространстве нужным образом.

Для замены 60 W лампочки (по яркости свечения) понадобится около дюжины недорогих полупроводниковых приборов.

Если каждый из них способен пропускать ток в 1 А при напряжении 3,3 V, то в осветительную сеть их включить нельзя – сразу сгорят. Можно воспользоваться делителем из резисторов, но на них будет рассеиваться большая мощность. Поэтому КПД светильника будет небольшим.

Для снижения напряжения и преобразования тока в постоянный применяют драйверы. Внутри этих устройств могут быть различные стабилизаторы тока, емкостно-резистивные делители и т. д.

В схему могут входить транзисторы, микросхемы, конденсаторы и т. д. Такие преобразователи меняют напряжение и обеспечивают подачу нужного количества тока каждому элементу.

Разновидности светодиодных драйверов

Есть несколько типов преобразователей для полупроводниковых источников света. Основные типы – линейный и импульсный. Каждый из них создается для своих целей и имеет свои нюансы.

Линейный

Этот тип применяют часто. Его сборка, при наличии всех деталей, может длиться 5-10 минут. Наладка ему почти не нужна – он начинает работать сразу.

В схеме присутствует линейный стабилизатор тока, который можно представить как переменный резистор, управляемый электронной схемой.

При подаче входного напряжения оно идет на регулирующий элемент и затем на схему (КТ) контроля тока. После этого оно появляется на выходе, к которому подсоединена нагрузка. Узел КТ проверяет ток и в зависимости от этого меняет сопротивление регулирующего элемента.

Недостаток подобного устройства – низкий КПД.

Импульсный

В основе этого типа драйвера лежит другой принцип. Регулирующим элементом здесь выступают ключи с трансформатором. При подаче напряжения на обмотках начинает запасаться энергия (в магнитном поле). Ток постепенно возрастает.

Как только он достигнет нужной величины, произойдет переключение ключей. Запасенная энергия пойдет в цепь, и ток начнет уменьшаться. По достижении минимального значения вновь сработают ключи и процесс повторится.

Принцип работы устройства

Основная работа драйвера – создание на выходе заданного значения тока и его поддержание. Любая схема подобного типа состоит из нескольких частей:

  • сетевого фильтра, защищающего сеть от помех;
  • конденсаторно-резисторного (RC) или трансформаторного узла для снижения напряжения;
  • диодного моста для выпрямления;
  • стабилизатора тока.

Устройство с RC фильтром действует так:

  1. Конденсатор в сети переменного тока выполняет функции емкостного сопротивления. Вместе с мостом он образует делитель напряжения и уменьшает его до нужного предела. Резистор в его цепи служит для самозарядки.
  2. Сниженное напряжение поступает на стабилизатор тока, а с него – на светодиоды.

Трансформаторный узел представляет собой устройство ключевого или другого типа, управляемое генератором. Он может быть выполнен на специализированных микросхемах, высоковольтных ключевых транзисторах, простых элементах или на ШИМ контроллере.

Такой драйвер работает следующим образом:

  • при подаче питания мост выпрямляет его, и оно идет на ключи, на которых с помощью обмоток создаются противофазные напряжения;
  • одновременно с ними включается генератор, который вырабатывает импульсы и запускает драйвер;
  • ключи, включаясь попеременно, обеспечивают бесперебойную работу устройства через цепь обратной связи;
  • на выходной обмотке возникает переменное напряжение, выпрямляемое мостом или 1-2 диодами вместе с электролитическими конденсаторами;
  • далее в цепи стоит стабилизатор тока, к которому подключают светодиоды.
Читайте также:  Таблица схема регулировки тнвд 236

Характеристики и отличия от блоков питания led ленты

Нельзя применить вместо преобразователя простой БП, рассчитанный на те же напряжение и ток. Хотя оба устройства (драйвер и блок led ленты) выполняют почти одну и ту же функцию – существенные различия есть.

Простой БП преобразует напряжение и выдает постоянный ток. Элементы ленты, подключаемые к нему, состоят из светодиода и резисторов. Таких узлов в ленте может быть много.

Управлять свечением полупроводника трудно, т. к. оно зависит от изменения величины тока, а он в данном узле постоянный. Для увеличения или изменения яркости в светодиодной ленте придется одновременно регулировать все резисторы, а это нереально.

Драйвер является стабилизатором тока. Светодиоды подключены к нему последовательно. Поскольку в любой стабилизатор можно вставить регулирующий элемент, то яркость полупроводников получится свободно менять. Для этого следует лишь поднять или опустить общую величину силы тока.

Изготовление драйвера для светодиодов своими руками

Если в наличии пользователя есть несколько полупроводниковых кристаллов или линейка подсветки из старого телевизора, он может самостоятельно сделать источник тока для них.

Для этого следует приобрести приборы и детали или выпаять радиоэлементы из старой аппаратуры. Часто КПД устройств, сделанных своими руками, намного выше, чем у промышленных образцов.

Материалы и инструменты для работы

Для самодельного простого драйвера потребуются:

  • конденсаторы: простой 0,27 мкф на 400 V и 2 электролитических 500×16 V и 100×16 V;
  • резистор 500 кОм на 0,5 W;
  • 4 диода или готовый мост на 220 V;
  • микросхема LM317;
  • паяльник мощностью 20-40 Вт;
  • флюс и припой (желательно типа ПОС);
  • пассатижи, кусачки, плоскогубцы;.
  • многожильные изолированные проводники из меди сечением 0,35-1 мм²;
  • трубка термоусадочная;
  • мультиметр или тестер;
  • изолента;
  • плата для распайки элементов.

Схемы простого драйвера для светодиода 1 Вт и мощного

Классический преобразователь представляет собой сочетание электронного делителя напряжения и микросхемы-стабилизатора. Первый узел состоит из 2 элементов (конденсатора 0,27 мкф и резистора 500 кОм), соединенных параллельно, к которым последовательно подключен мост из диодов, выдерживающих входное напряжение.

Для сглаживания пульсаций устанавливают 2 «электролита». Первый из них 500×16 V паяют сразу после моста. Затем монтируют стабилизатор тока. За ним второй конденсатор 100×16 V.

В качестве стабилизатора часто применяют микросхему L7812, но это не совсем правильное решение. Она является линейным устройством, регулирующим напряжение, и при изменении тока может сгореть.

Схема подключения

Лучше воспользоваться микросхемами LM317, LM338 или LM350, у которых есть защита от КЗ и перегрева. Питать их можно любым напряжением 5-35 V. К драйверу можно подсоединить 5-10 светодиодов.

Схема подключения проста:

  • плюс делителя идет на вход микросхемы (1 вывод);
  • общий провод через анод светодиода идет на минус радиодетали (среднюю ножку);
  • туда же через резистор, ограничивающий ток, подключен выход LM317 (3 контакт).

Установив вместо последнего элемента регулируемое сопротивление, можно изменять силу тока, т. е. яркость светодиодов в некоторых пределах.

Если нужно соорудить мощный прожектор, то драйвер придется модифицировать:

  • необходимо поднять питающее напряжение до 24 V;
  • установить стабилизатор с наибольшим током, а из предложенных микросхем только LM338 может выдавать 5А.

Ввиду большой силы тока следует установить ее на радиатор.

Как собрать и настроить драйвер?

В простом преобразователе для светодиодов мало элементов. Драйвер можно собрать на специальной плате, куске фанеры или провести навесной монтаж.

Устройство не требует наладки, если взять все указанные детали. Главное – правильно рассчитать резистор, ограничивающий ток.

Нюансы драйвера без стабилизатора тока

Многие пользователи совсем не ставят микросхему или другой подобный узел. Но отсутствие трансформатора приводит к пульсации напряжения и тока.

Яркость светодиодов при этом тоже меняется. Частично проблему решает конденсатор, установленный после моста. Если стабилизатор не установлен, то минимальная величина пульсации составит 2-5 V.

Вариант c микросхемой позволит избавиться от проблемы. Поэтому драйвер, смонтированный своими руками, по степени пульсации не уступит зарубежным аналогам.

Правила расчета технических параметров

Работоспособность любого устройства зависит от правильно подобранных компонентов. Поэтому необходимо знать, как рассчитывать каждый элемент драйвера.

Емкость гасящего конденсатора определяют по формуле:

С(мкФ) = 3200*I нагрузки/√(Uвход²-Uвыход²)

Например, для светодиодов с током 300 mA :

С(мкФ) = 3200* 300 /√(220²-24²) = 4,367 мкф.

Величина ограничивающего сопротивления прямо пропорциональна количеству потребляемого тока:

  • 500 mA – 2,5 Ом;
  • 250 mA – 5 Ом;
  • 125 mA – 10 Ом.

Зная эти величины, можно рассчитать резистор для любого количества светодиодов.

Срок службы устройства

Длительность работы драйвера зависит от разных параметров. Это напряжение и ток нагрузки, качество использованных деталей, правильный расчет и многое другое. Общий срок службы устройства может составить от 1 года до нескольких десятков лет.

Источник

Adblock
detector