Меню

Как можно регулировать напряжение на блоке питания



Блок питания из АТХ своими руками. Рабочая схема с регулировкой тока и напряжения.

У каждого, уважающего себя радиолюбителя должен быть регулируемый блок питания и по возможности даже не один. Решив заняться электроникой, я тоже принял решение изготовить блок питания из блока АТХ. На тот момент мне удалось приобрести 5 исправных блоков питания за 500 рублей, то есть опыты было на чем проводить и учиться.

В качестве основы для переделки был выбран блок питания на TL494 фирмы Power Master model no: FA-5-1(300W PEAK LOAD), как понятно из названия выдавать такой блок может 300 Ватт в пике.

Долго мучался я с выбором схемы для переделки, опыта работы с импульсными блоками питания у меня не было. В итоге, пообщавшись со специалистами на одном из форумов, я решил делать вот по такой схеме.

Конечно, для начала нужно хотя бы изучить, где у TL494 находится первая нога, понять, как она примерно работает или хотя бы какой вывод куда идет и за что отвечает, какое напряжение подавать.

Глядя по схеме и читая профильные форумы, я понял, что для начала необходимо убрать с блока всё лишнее, выпаять лишние провода, оставив по 2 провода 12 вольтовой линии и минуса. Конденсаторы по линии 12 вольт поменять с 16 вольт на 35 вольтовые такой же или большей емкости, с дросселя групповой стабилизации можно убрать лишние обмотки минус 12 вольт, 3.3 вольта, если не нужна, то и 5 вольт можно убрать.

Первый запуск обязательно через лампу накаливания, вылет ключей, конечно, она не предотвратит, но позволит избежать развития кз в схеме и полного ее выгорания в случае фатальной ошибки. После приведения всей платы к виду, как указано на схеме, производим пробный пуск, при этом, я по току поставил сопротивление 470 Ом, по напряжению 10кОм. С лампой 60Вт в нагрузке напряжение регулируется до 18В, ток до 0.8А. При подключении шуруповерта ток возрастает до 4 А, а напряжение падает до 3.5В. Думаю, лампа не даёт развить мощность или в схеме что не так? Понимаю, что лампу можно убрать, с ней бп на всю мощь не выйдет. Резистор с шунта подсказали уменьшить, иначе не будет ограничения по току, потом по немного увеличивать, выставив переменник на максимум тока и соответствующую нагрузку на выход.

Шунт поставил из двух керамических сопротивлений по 0.1 Ом 5 ватт. Следует понимать, что чем больше сопротивление резистора с шунта на шим тем больший ток может дать бп. Лучше ограничивать на уровне 8-10 ампер. Для наладки вешаем нагрузку на выход ватт на 100 (можно 12вольтовые авто лампы, галогенки, ну или что есть), выставляем 12 вольт, крутим переменник «ток» до упора, смотрим контрольным амперметром максимальный ток, если мало, то увеличиваем сопротивление с шунта на 20-50 Ом пока не добьёмся нужного максимального тока. Можно последовательно подпаивать, потом заменить одним близким номиналом.

Я в начале подцепил в нагрузку лампу 60 Вт, вращаю регулятор напряжения — ничего, добавляю регулятором тока -растёт до 6В и 0.5 А, больше никак. Думаю, в чем проблема? Оказалось, что это уже работает ограничение, следует понемногу увеличивать резистор с шунта. Допустим. Если стоял резистор 50 Ом, поставьте на 100 Ом.

Обязательно смотрите и контролируйте температуру ключей, ибо можно заиграться при наладке, бахнут по перегреву. После любых изменений в схеме, перед включением, выкручивайте переменники регулировки напряжения и тока в ноль.
Как видно по схеме, на выходе стоит динамическая нагрузка (можно выбрать один из нескольких предложенных вариантов). Эта нагрузка нужна блоку питания, если на клеммах ничего нет, чтобы он не шёл вразнос, обычно ставят пятиватник 100 Ом, можно и элэмку. Вентилятор я запитал через L7812, поставив её на радиатор, вместо диодной сборки по 5В линии. Запитал от 12 ноги шимки.
Чтобы окончательно отрегулировать выходной ток, необходимо выставить около 10 Вольт, ток на минимум. На выход блока подключить амперметр и плавно вращая ручку регулировки тока смотреть, какой максимальный ток получится на выходе. При необходимости заменить номинал резистора шунта.

У меня при такой настройке напряжение упало до 2 вольт, ток показал около 8 ампер. Мне было нужно немного больше, поэтому поднял сопротивление резистора и опять провел замеры.

Иногда при регулировке напряжения или при работе ограничения тока возможны высокочастотные писки. Чтобы избавиться от них необходимо подобрать RC цепочки. Для устранения при регулировке напряжения они ставятся между выводами 2 и 3 шим контроллера TL494, для устранения писка при регулировке тока — между 3 и 5 ногами. Можно ставить переменники и пробовать. Конечно, лучше всего стать осциллографом на выход и крутить, слушать, смотреть сигнал по минимуму размаха пульсаций. Но я к сожалению не имею такого прибора, поэтому пришлось просто ориентироваться по убыванию лишних звуков на слух, сначала регулируя напряжение (без нагрузки), у меня звук проявлялся примерно на 6-7 вольтах, полностью подавил шум регулировкой RC цепи, а потом подкинув нагрузку и регулируя ток (у меня шуршало на 4 амперах), регулировкой RC цепи полностью убрал шорохи, сейчас блок питания вообще не слышно.

Читайте также:  Регулировка стояночного тормоза на кайроне

Для изготовления передней панели воспользовался программой FrontDesigner3.0. Напечатал на обычном листе и закрыл всё оргстеклом, ничего лишнего.

Вот по такой простой схеме можно сделать довольно приличный блок питания, который используется для зарядки аккумуляторов, как источник для питания шуруповерта, для питания различных устройств при монтаже и наладке с ограничением тока.

Надеюсь, моя статья хоть немного поможет всем, кто хочет сделать блок питания из АТХ своими руками. Подписывайтесь на канал, пишите комментарии, я мог забыть некоторые тонкости, так как делал более года назад, будут вопросы – задавайте. Спасибо!

Источник

Кнопочная регулировка напряжения компьютерного блока питания. + (Видео)

Всех приветствую. Сегодня мы попробуем сделать кнопочную регулировку напряжения компьютерного блока питания. Для этого нам потребуется блок реализованный на микросхеме TL494 и кнопочный регулятор опорного напряжения на ATtiny13.

Блок питания как я говорил выше, должен быть реализован на микросхеме TL494. Потому что у данной микросхемы есть отдельный вход для опорного напряжения. Это вторая ножка. Именно на этом выводе мы будем изменять опорное напряжение с помощью кнопочного регулятора. Описание этого регулятора есть в одной из моих предыдущих публикации. Либо в этом видео.

Удаляем резистор который подаёт опорное напряжение c 14 ноги на вторую. Этим мы отключаем встроенный в микросхему формирователь опорного напряжения от второй ноги.

Родной резистор имеет номинал 4,7 Ком. Поэтому буду подавать опорное напряжение с кнопочного регулятора тоже через 4,7 Ком.

Питание для кнопочного регулятора берётся с дежурного источника питания 5 вольт. На фото это чёрный и красный провода.

Ещё нужно удалить резистор обратной связи по 5-ти вольтовой линии. Для чего это делается можно узнать из этого видео.

По фото примерно понятна его локация на моей плате. Позиция R15.

Не забываем запустить блок питания соединив контакт PS-ON с минусом. На стандартном разъёме блока питания это зелёный провод, его необходимо соединить с чёрным. На данной плате я просто припаял провод.

В целом всё готово! Можно включать! Для наглядности я припаял лампочку на 12 вольт 5 Ватт и мультиметр.

Очень рекомендую после каких либо переделок включать блок в сеть через лампочку 220 Вольт 60-100 Ватт.

Мультиметр показывает минимальное выходное напряжение 0,11 Вольт. Пробую увеличить напряжение нажимая кнопку плюс.

Далее я решил попробовать выставить «популярные» напряжения, а именно 3,3Вольт 5Вольт и 12Вольт.

И максимум, что выдаёт блок при данной переделке, это 13,37 Вольт.

Напоминаю минимум было 0,1 Вольта. Шаг регулировки примерно 0,05 Вольт. 13,37 Вольт делим на 256 шагов получаем 0,052 Вольта.

Немного позже при включении и выключении блока, я заметил сбои в работе кнопочного регулятора напряжения. То он выдавал максимальное напряжение, то минимальное, то любое рандомное, при этом на кнопки не было никакой реакции. Мне помогла искусственная нагрузка дежурного источника питания в виде резистора на 22 Ома.

Точно так и не понял в чём причина, возможно регулятору не нравятся пульсации, резистор возможно их снижает или как-то изменяет. Осциллографом к сожалению проверить не могу.

Ниже в видео можно посмотреть как это всё работает.

Источник

Как сделать простой регулятор напряжения своими руками

28 сентября 2018

Время на чтение:

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Читайте также:  Регулировка оборотов двигателя бензопилы

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Читайте также:  Как отрегулировать дизельную аппаратуру

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Источник

Adblock
detector