Меню

Генератор импульсов на кр1006ви1 с регулировкой



Радиоконструктору

Мультивибраторы на на таймере КР1006ВИ1(NE555)

В современной аппаратуре широко применяют генераторы прямоугольных импульсов, выполненные на таймерах. При простоте схемы они обладают весьма высокими эксплуатационными характеристиками. Стабильность частоты генерации обеспечена принципом действия микросхемы.

Так как образцовое напряжение на оба компаратора DA1 и DA2 (рис. 2.36) задают внутренние делители напряжения R1—R3, пороги срабатывания компараторов сдвигаются пропорционально изменению питающего напряжения, и напряжение, заряжающее конденсатор С1, меняется в той же пропорции, компенсируя погрешность. Уход частоты генератора при изменении напряжения питания на 1 В не превышает 0,1%.

В литературе описано много генераторов на таймерах. Схема простейшего из них изображена на рис. 5.39, а. За счет объединения обоих управляющих входов — выводы 2 и 6 — микросхема работает как триггер Шмитта. Времязадающая RC-цепь состоит из одного резистора (R1) и одного конденсатора (С1) и может быть легко приспособлена для перекрытия диапазона частот.

В момент подачи напряжения питания на входе таймера будет напряжение низкого уровня, на выходе — высокого. Конденсатор С1 начинает заряжаться. Как только напряжение на конденсаторе достигнет значения 2/3 Uп сработает компаратор DA1. Он переключит внутренний триггер, и уровень выходного напряжения сменится на низкий. Конденсатор С1 начнет разряжаться. Когда напряжение на входе микросхемы снизится до 1/3 Uп, компаратор DA2 вызовет обратное переключение триггера и начнется новый цикл работы. В установившемся режиме генерации напряжение на конденсаторе колеблется в пределах от 1/3 Uп до 2/3 Uп (рис. 5.39,б),

Таймер КР1006ВИ1 устойчиво генерирует вплоть до частоты 1 МГц. Выходное напряжение, заряжающее конденсатор С1, немного меньше напряжения питания: U 1 вых=Uп—Uкэ, где Uкэ — падение напряжения на выходном биполярном транзисторе таймера. Это — недостаток рассмотренного варианта генератора. Вычитаемое напряжение Uкэ = 0,6. 0,9 В служит причиной неравенства длительности стадий зарядки и разрядки, а также нестабильности частоты.

Включением дополнительного резистора R2 сопротивлением 1. 2 кОм разность Uп—U 1 вых можно уменьшить, улучшив тем самым параметры генератора. Скважность становится практически равной 2, а уход частоты при изменении питания от 5 до 12 В (без нагрузки) менее 0,1%. Однако резистор R2 дополнительно нагружает источник питания при U 0 вых.

Период колебаний можно определить, приняв U 1 вых ≈Uп; U 0 вых ≈0В,

следовательно, период колебаний

Вариант генератора на рис. 5.39, в работает подобно рассмотренному с тем лишь отличием, что зарядка конденсатора происходит, когда выходное напряжение имеет низкий уровень, и разрядка — высокий.

На частоту этих генераторов влияет сопротивление нагрузки, что является существенным их недостатком. Так, при напряжении питания Uп= 12 В (R2=1 кОм, см. рис. 5.39, а) изменение нагрузки в пределах от 10 до 1 кОм вызывает уход частоты на 2,5%.

На практике чаще употребляют генератор по схеме рис. 5.40, а свободный от этого недостатка. Здесь резистор R3 и выключатель SA1 служат для прерывания колебаний. При замкнутых контактах генерация прекращается. Если прерывания не требуется, эту цепь исключают, а вывод 4 таймера соединяют с плюсовым проводом питания, как обычно.

Зарядный ток конденсатора С1 протекает через резисторы R1 и R2. У транзистора VT1 таймера (см. рис. 2.36) коллектор соединен с выводом 7, поэтому транзистор в это время закрыт. Выходное напряжение имеет

Рис. 5.40. Мультивибратор на таймере КР1006ВИ1 с улучшенными параметрами:а — принципиальная схема; б — схема мультивибратора, позволяющая изменять скважность выходных сигналов

высокий уровень. После достижения на конденсаторе С1 напряжения 2/3 Un произойдет переключение внутреннего триггера, одновременно с переключением выходных транзисторов таймера откроется и транзистор VT1 и начнется разрядка конденсатора.

Разрядный ток течет через резистор R2 и выходной транзистор VT1. Так как на выводе 7 таймера напряжение практически равно нулю, подзарядки конденсатора не происходит. Когда напряжение на конденсаторе С1 уменьшится до 1/3 Un, произойдет очередное переключение, транзистор VT1 закроется и начнется новый цикл работы. В этом генераторе хронирующая цепь и выход таймера не связаны между собой. Для возникновения самовозбуждения следует обеспечить сопротивление R2 ≥ 3 кОм.

Временные диаграммы работы генератора такие же, как и у предыдущего.

Время зарядки конденсатора С1

(5.19)

а время разрядки

tp = 0,693R2C1 ≈ 0,7R2C1. (5.20)

Период колебаний, таким образом,

T=tз+tр = 0,7(R1+ 2R2) С1, (5.21)

а частота колебаний

f = 1/T= 1,44/ [ (R1 + 2R2) С1 ]. (5.22)

Важно отметить, что напряжение питания не входит в эти формулы, т. е. не влияет на частоту генерирования.

Так как R1 + R2>R2, длительность зарядки t1 (в течение которой Uвых имеет высокий уровень) всегда превышает длительность t2. Скважность выходного напряжения

Если желательно иметь симметричный выходной сигнал, следует параллельно резистору R включить диод VD1, выведя тем самым резистор R2 из цепи зарядки конденсатора. Еще один диод — VD2, включенный последовательно с резистором R2 (рис. 5.40,б), создает равные условия для разрядки, в результате чего отношение t1/t2 становится эквивалентным отношению R1/R2. Хронирующая цепь с диодами позволяет регулировать скважность в широких пределах.

Когда требования к симметрии выходных сигналов не очень высоки, можно ограничиться только одним диодом VD1.

Читайте также:  Регулировка клапанов на калине 8 клапанов схема

Рис. 5.41. Схема мультивибраторов на таймере КР1006ВИ1, обеспечивающая выходные импульсы со скважностью Q = 2

Выходное напряжение строго симметричной формы со скважностью 2 можно получить, добавив последовательно с резистором RC-цепи полевой транзистор VT1 (рис. 5.41). Сопротивление этого транзистора в открытом состоянии должно быть, по меньшей мере, в сто раз меньше сопротивления зарядного резистора R1, если необходимо обеспечить ошибку в симметрии менее 1 %.

Когда выходное напряжение имеет высокий уровень, транзистор VT1 открыт и конденсатор С1 заряжается. Когда напряжение на конденсаторе достигнет 2/3 Un, сработает компаратор DA1 и напряжение на выходе упадет до низкого уровня. В этот момент полевой транзистор VT1 закроется, отключая RC-цепь от источника питания, а внутренний транзистор VT1 таймера (рис. 2.36) откроется, разряжая конденсатор. Когда напряжение на входах компараторов снизится до 1/3 Un, произойдет новое переключение и описанный процесс будет повторяться. Поскольку при разрядке конденсатора RC-цепь отключена от источника питания, продолжительность циклов зарядки и разрядки одинакова. Строгая симметричность выходных импульсов такого генератора зависит от точности, с которой подобраны сопротивления резисторов внутреннего делителя, создающего образцовые напряжения для компараторов. Оптимальное напряжение питания для генератора по схеме на рис. 5.41—от 12 до 15 В. При меньшем напряжении параметры транзистора VT1 сильнее сказываются на качестве работы. Частота генерации fген = 0,72/ (R1С1).

После включения питания, когда напряжение на конденсаторе С1 равно нулю, первый интервял выходного напряжения длится дольше, чем последующие в установившемся режиме. Продолжительность его равна t= 1,1 (R1 + R2)C1.

Частотную модуляцию колебаний можно реализовать, подавая модулирующее напряжение на вывод 5 таймера, на котором действует образцовое напряжение компаратора DAI, Uобр = 2/3Un (рис. 5.42). При изменении образцового напряжения для обеспечения срабатывания компаратора напряжение на другом его входе — выводе 6 — должно измениться таким же образом. Поскольку напряжение на выводе 6 определяется временем зарядки и разрядки конденсатора С1, длительность интервалов tI и t2 будет

Рис. 5.42. Способ частотной модуляции колебаний мультивибратора на таймере КР1006ВИ1 (а) и его временные диаграммы (б)

меняться пропорционально модулирующему напряжению (рис. 5.42,б). Для успешной работы необходимо соблюдать условие fген >> fмод

Источник

Генератор импульсов на кр1006ви1 с регулировкой

В 14 раз выросло количество россиян на MediaTek Labs ? проекте по созданию устройств «интернета вещей» и «носимых гаджетов»

Сравнив статистику посещения сайта за два месяца (ноябрь и декабрь 2014 года), в MediaTek выяснили, что число посетителей ресурса из России увеличилось в 10 раз, а из Украины ? в 12. Таким образом, доля русскоговорящих разработчиков с аккаунтами на labs.mediatek.com превысила одну десятую от общего количества зарегистрированных на MediaTek Labs пользователей.

Новое поколение Джобсов или как MediaTek создал свой маленький «Кикстартер»

Амбициозная цель компании MediaTek — сформировать сообщество разработчиков гаджетов из специалистов по всему миру и помочь им реализовать свои идеи в готовые прототипы. Уже сейчас для этого есть все возможности, от мини-сообществ, в которых можно посмотреть чужие проекты до прямых контактов с настоящими производителями электроники. Начать проектировать гаджеты может любой талантливый разработчик — порог входа очень низкий.

Семинар и тренинг «ФеST-TIваль инноваций: MAXIMум решений!» (14-15.10.2013, Новосибирск)

Компания Компэл, приглашает вас принять участие в семинаре и тренинге ?ФеST-TIваль инноваций: MAXIMум решений. который пройдет 14 и 15 октября в Новосибирске.

Популярные материалы

Комментарии

люди куплю транзистар кт 827А 0688759652

как молоды мы были и как быстро пробежали годы кулотино самое счастливое мое время

Светодиод — это диод который излучает свет. А если диод имеет ИК излучение, то это ИК диод, а не «ИК светодиод» и «Светодиод инфракрасный», как указано на сайте.

Подскажите 2т963а-2 гарантийный срок

Журнал «Радио», номер 8, 1999г.
Автор: А. Шитов, г. Иваново Московской обл.

Журнал «Радио» неоднократно публиковал описания различных приборов и устройств, в которых использована микросхема — таймер КР1006ВИ1. В большинстве из них он включен по схеме, близкой к типовой, рассчитанной на генерацию прямоугольных импульсов.
Автор этой статьи, стремясь расширить сферу применения таймера, предлагает на суд читателей несколько новых и малоизвестных схем генераторов на КР1006ВИ1.

Сначала рассмотрим работу простого генератора, собранного по широкоизвестной схеме (рис. 1). Генератор вырабатывает прямоугольные импульсы со скважностью, равной двум. Период колебаний связан с номиналами резистора R1 и конденсатора С1 соотношением Т=1,4R1 . C1.

При включении питания конденсатор С1 начинает заряжаться через резистор R1 и открытый транзистор VT1. Когда напряжение на конденсаторе достигнет 2Uпит/3, напряжение на выходе (вывод 3) таймера DA1 уменьшится до нуля и одновременно с этим откроется внутренний транзистор таймера, соединив его выход с открытым коллектором (вывод 7) с общим проводом (в дальнейшем для краткости выход с открытым коллектором будем называть «выходом с ОК»). Транзистор VT1 при этом закроется, так как напряжение на базе станет практически равным нулю. Конденсатор теперь разряжается через резистор R1 и диод VD1. При уменьшении напряжения на конденсаторе до напряжения Uпит/3 внутренний транзистор таймера закроется и цикл работы генератора повторится.

Читайте также:  Хонда пал скутер регулировка карбюратора

Таким образом, конденсатор С1 заряжается и разряжается через один и тот же резистор R1, определяющий постоянные времени зарядки и разрядки. Поэтому скважность выходных импульсов очень близка к двум. Более точно скважность импульсов можно установить подборкой резистора R2.

На рис. 2 показана схема еще одного генератора прямоугольных импульсов вида «меандр», их частоту следования можно регулировать переменным резистором R2, а скважность остается постоянной.

Сразу после включения питания на выходе таймера устанавливается напряжение высокого уровня, так как конденсатор С1 пока не заряжен, и напряжение на входе S микросхемы ниже порогового уровня (равного 2Uпит/3). Коллекторный ток открытого транзистора VT2 открывает транзистор VT1, поэтому конденсатор С1 начинает заряжаться через резисторы R1-R3. Когда напряжение на конденсаторе достигнет 2Uпит/3, триггер таймера переключится в нулевое состояние. Оба транзистора закроются, но откроется внутренний транзистор таймера, соединив с общим проводом выход с ОК. Конденсатор С1 теперь разряжается через резисторы R2 и R3.

Резистор R1 предназначен для ограничения тока транзистора VT1 во время переключения таймера. Для формирования импульсов со скважностью, наиболее близкой к двум, необходимо, чтобы сопротивление резистора R1 было значительно меньше, чем у резистора R3. Период колебаний можно ориентировочно рассчитать, воспользовавшись выражением T=1,4C1(R2 + R3).

Генератор, схема которого изображена на рис. 3, также вырабатывает прямоугольные колебания регулируемой частоты с постоянной скважностью, равной двум. Но в отличие от вышеописанных вариантов, напряжение на конденсаторе в этом генераторе изменяется не по экспоненциальному закону, а линейно.

Работает генератор аналогично предыдущему, за исключением того, что зарядный и разрядный ток конденсатора формирует источник тока на полевом транзисторе VT2. Диодный мост VD1 — VD4 выпрямляет напряжение, прикладываемое к транзистору VT1. Период колебаний связан с номиналами времязадающих элементов соотношением Т=2С1 . Uпит/(3I), где I — ток, вырабатываемый источником.

Минимальное напряжение, при котором возможна устойчивая работа устройства, равно 9 В. При меньшем значении напряжение на конденсаторе может и не достигнуть порогового уровня 2Uпит/3 (или разрядится до Uпит/3).

С конденсатора С1 можно снимать колебания треугольной формы, их амплитуда равна Uпит/3. Нагрузочная способность выхода 2 очень мала, поэтому желательно включать нагрузку через промежуточный повторитель напряжения на полевом транзисторе, собранный по одной из схем на рис. 4, или на операционном усилителе.

Напряжение на конденсаторе находится в пределах между Uпит/3 и 2Uпит/3, поэтому имеется возможность однополярного питания операционного усилителя. Так, мною были испытаны ОУ КР544УД1, КР544УД2, рассчитанные на двуполярное питание 2×15 В. Оказалось, что они нормально работают в таком режиме даже при однополярном напряжении 9 В. При меньшем напряжении можно применить счетверенный ОУ К1401УД2А или К1401УД2Б. Они работоспособны при снижении напряжения питания до 5 В.

Помимо нагрузки, отрицательное воздействие на форму колебаний оказывают также входной ток таймера, ток утечки конденсатора С1 и обратный ток диодов моста. Если источник на транзисторе VT1 генерирует слишком малый ток, напряжение на конденсаторе перестанет изменяться линейно. По этой причине желательно подобрать диоды выпрямительного моста с минимальным обратным током. У большинства маломощных кремниевых диодов обратный ток в обычных условиях не превышает 1 нА, поэтому ток источника можно снизить до 1 мкА и даже менее. В этом случае суммарное сопротивление резисторов R2 и R3 должно быть вблизи 1. 2 МОм.

Полевой транзистор VT2 (рис.3) с n-каналом заменим на р-канальный. При такой замене полярность включения диодов VD1-VD4 моста необходимо изменить на обратную.

Генератор прямоугольного и треугольного напряжений можно построить полностью на биполярных транзисторах, как показано на рис. 5. На транзисторе VT3 собран источник тока, формирующий зарядный и разрядный ток конденсатора С1. Транзисторы VT2 и VT4 образуют «токовое зеркало». Назначение транзисторов VT1 и VT5 понятно из описания предыдущих вариантов генератора.

При напряжении высокого уровня на выходе таймера DA1 транзисторы VT5 и VT1 открыты. Конденсатор С1 заряжается при этом через транзисторы VT1 и VT4. «Токовое зеркало» на транзисторах VT2 и VT4 обеспечивает ток через конденсатор, равный току, формируемому источником на транзисторе VT3.

При низком уровне на выходе таймера транзисторы VT1, VT2, VT4 и VT5 закрыты, поэтому конденсатор разряжается через коллекторный переход транзистора VT4. Ток разрядки конденсатора также задает источник тока на транзисторе VT3.


При реализации этого генератора необходимо иметь в виду, что для реализации всех преимуществ использованного схемного решения транзисторы «токового зеркала» должны представлять собой сборку на общем кристалле, иначе оно может давать значительную токовую ошибку (в 10 и более раз) и сильную зависимость тока от температуры.

Напряжение треугольной формы снимают с конденсатора С1 через повторитель на полевом транзисторе или на ОУ.

Если возникла необходимость в частотной модуляции генерируемых колебаний, стабилитрон VD1 и резистор R1 исключают, а модулирующее напряжение подают на базу транзистора VT3.

Читайте также:  Замена и регулировка сцепления на лтз 55

На таймере КР1006ВИ1 можно построить также генераторы пилообразных колебаний. Схема одного из таких генераторов показана на рис. 6. Когда на выходе таймера DA1 присутствует напряжение высокого уровня, конденсатор С1 заряжается сравнительно медленно от источника тока на полевом транзисторе VT1. Как только напряжение на конденсаторе достигнет уровня 2Uпит/3, высокий уровень напряжения на выходе таймера сменится на низкий и конденсатор быстро разрядится через открытый внутренний транзистор микросхемы.

Частоту генерации определяют ток I источника на транзисторе VT1 и емкость конденсатора С1. Период колебаний генератора равен Т=C1 . Uпит/(3I)

Генератор по схеме рис. 5 может вырабатывать напряжение и пилообразной формы — для этого достаточно выход с ОК таймера (выв. 7) соединить через контакты тумблера с входами R и S. Пилообразные колебания снимают с выхода 2. Таким образом, генератор становится трехфункциональным.

Источник

Регулятор мощности на КР1006ВИ1

Схема регулятора довольна проста, и не имеет дефицитных деталей, при этом имея большой потенциал в модернизации. Сердцем данного устройства является микросхема КР1006ВИ1 или ее китайский аналог NE555. А в роли регулятора выступает тринистор КУ202Н.

Итак, стабилитрон VD2 и резистор R8 образуют собой ограничитель напряжения сети, который остается на уровне 5,6 В. Резисторы R1, R2 и конденсатор C1 — представляют собой времязадающую цепь для работы таймера микросхемы DA1. С помощью переменного резистора R4 возможно изменять порог срабатывания компаратора высокого уровня таймера DA1 и как следствие осуществлять регулировку мощности.

Таймер микросхемы DA1 включен по схеме мультивибратора и в течение полупериода напряжения сети, пока на него поступает напряжение питания, он формирует пачку импульсов с отрицательной полярностью. Длительность этих импульсов определяется скоростью разрядки конденсатора C1 через внутренний выходной транзистор таймера и резистора R1, по следующей формуле:
T=0,7*R1*С1 ≈ 10 мкс.

С коллектора транзистора VT1 на управляющий переход тринистора VS1 приходят положительные импульсы. В начале полупериода, в момент когда сетевое напряжение начинает увеличиваться, конденсатор C1 разряжен, а напряжение порога срабатывания компаратора высокого уровня при верхнем по схеме положении движка резистора R4 равно 5,1 В, на выходе таймера (на выводе 3) высокий уровень напряжения (около 5,1 В) транзистор VT1 и тринистор VS1 закрыты, мост из диодов VD3-VD6 напряжение сети на нагрузку не пропускает.

Затем, примерно через 57 мкс, напряжение сети достигает 5,6 В. Постоянная времени зарядки конденсатора C1 рассчитывается по формуле:
t=(R1+R2)*C1 ≈ 3,6 мс.

С вычисленной постоянной времени, конденсатор C1 зарядится до напряжения порога срабатывания компаратора высокого уровня (5,1 В) за 9,9 мс. А напряжение на выходах таймера уменьшится до нуля и следственно конденсатор С1 начнет разряжаться до напряжения порога срабатывания компаратора низкого уровня ( примерно до 2,5 В). Транзистор VT1 откроется, и на управляющем электроде тринистора VS1 будет открывающее его напряжение амплитудой 5 В в течение примерно 100 мкс.

Напряжение на стабилитроне VD2 с момента t=9,9 мс начинает уменьшаться, так же будет уменьшаться и порог срабатывания компаратора низкого уровня, поэтому конденсатор С1 будет разряжен до нуля. Следующие циклы зарядки-разрядки будут повторяться в каждом полупериоде.

Тринистор открывается, однако напряжения сети и тока через нагрузку, к этому моменту уже недостаточно, чтобы удержать его в открытом состоянии. И поэтому, мощность в нагрузку поступать практически не будет.

Если резистором R4 уменьшить порог срабатывания компаратора высокого уровня, к примеру до 4 В, то конденсатор С1 зарядится до этого уровня примерно за 5 мс, а затем напряжение на нем будет колебаться между значениями 4 В и 2 В с периодом равным:
Т = 0,7*(2*R1+R2)*C1 ≈ 2,5 мс.

Соответственно таймер сформирует в пределах полупериода напряжения сети пачку импульсов, длительность которых 10 мкс начиная с середины полупериода. Первый импульс из пачки открывает тринистор VS1, и в нагрузку поступает половина полупериода напряжения сети. А остальные импульсы пачки, на работу регулятора уже не будут оказывать никакого влияния. Если случится так, что тринистор не откроется первым импульсом пачки, то его откроет второй или последующие.

Тринистор закроется в конце полупериода, в тот момент, когда напряжение на нем упадет до нуля. Формирование импульсов, будет продолжаться до тех пор, пока не начнут уменьшаться напряжение питания таймера и порог срабатывания компаратора низкого уровня и пока конденсатор C1 не разрядится до нуля.

Максимальная мощность будет поступать к нагрузке при пороговом напряжении около 0,4 В (при меньшем таймер начинает работать неустойчиво), конденсатор С1 зарядится до этого значения за время около 0,3 мс, за которое напряжение сети достигнет примерно 29 В.

Транзистор VT1 можно использовать любой из серий КТ361, КТ3107, а диод VD1 — из серий КД503, КД521. Переменный резистор R4 — СП3-9а (или СП4-1а) с функциональной зависимостью Б для обеспечения плавности регулирования при малых значениях мощности в нагрузке.

Источник