Меню

Генератор импульсов на к561ла7 с регулировкой частоты и скважности



Генераторы импульсов на цифровых КМОП микросхемах.
Онлайн калькулятор расчёта элементов генераторов с симметричной формой выходного сигнала.

На сегодняшнем мероприятии, посвящённом Дню пивовара России, поговорим о радиоаппаратах с самовозбуждением, а конкретно — об устройствах, охваченных цепью положительной обратной связи и позволяющих выдавать на выходе периодические сигналы определённой колебательной природы.

А начнём с самого простого — генераторов прямоугольных импульсов с использованием цифровых КМОП микросхем.
Тема наболевшая: «Исследование разнообразных схемотехнических построений и характеристик генераторов на ИМС структуры КМОП».
О состоянии дел на участке генераторостроительного цеха и изыскании внутренних резервов «доложит нам начальник транспортного цеха».

Опишем несколько схемных решений генераторов прямоугольных импульсов, построенных на различных микросхемах серии К561, или каких-либо им подобным.
Все представленные схемы могут быть реализованы на элементах 2И—НЕ (ЛА7), 2ИЛИ—НЕ (ЛЕ5), триггерах Шмитта (ТЛ1), или инверторах (ЛН2).

В качестве докладчика выступил и поделился своими знаниями в журнале Радио №1 (2000г) господин С.Елимов — достойный сын столицы славной, города-героя Шупашкар (по-нашему — Чебоксары).

Генератор, изображённый на Рис.1 сохраняет работоспособность при снижении напряжения питания до 2В. При изменении значения Uпит от 5 до 15В уход частоты в сторону увеличения составляет примерно 10%.
Скважность импульсов близка к двум при любом напряжении питания.
В результате разогрева корпуса микросхемы частота несколько уменьшается (на 4% при 85°С).
С погрешностью, не превышающей 10%, можно вычислить частоту генерации данной схемы — F = 0,48/(R1×C1) .

Несколько лучшим параметром стабильности обладает генератор, выполненный на трех логических элементах и представленный на Рис.2.
Формула для вычисления частоты генерации данной схемы F = 0,54/(R1×C1) .

Обе схемы обладают весомыми величинами потребления тока, увеличивающимся с повышениями напряжения питания и частоты генерации. Значения эти находятся в диапазоне — от единиц до десятков мА.

Подобные по структуре генераторы можно выполнить и на одном элементе — триггере Шмитта (Рис.3).
При напряжении питания, близком к максимальному, они весьма стабильны по частоте.
Кроме того, они исключительно экономичны — при напряжении питания менее 6 В ток потребления составляет всего несколько десятков микроампер.
Частота генерации приведённой на Рис.3 схемы
F = 0,59/(R1×C1) .

Скважность импульсов приведённых генераторов близка к двум, однако из-за несимметричности входных защитных цепей некоторых типов микросхем возможно некоторое отклонение формы выходных сигналов от меандра.
Если требуется иметь на выходе идеально симметричные импульсы, то после схемы генератора следует поставить триггер — делитель частоты на 2, либо использовать симметричный мультивибратор (Рис.4).
Формула для вычисления частоты генерации данной схемы
F = 0,50/(R1×C1) .

Как не прискорбно, но это факт — стабильность колебаний RC генераторов невысока.

На Рис.5 показана схема простейшего LC-генератора. LC-цепь сдвигает фазу выходного сигнала элемента на 180°, в результате чего происходит самовозбуждение генератора.
Такие генераторы хорошо работают на повышенных значениях частоты, мягко возбуждаются и отличаются высокой температурной стабильностью.
Для устойчивой работы генератора величина волнового сопротивления LC-контура не должна быть менее 2кОм.
Частота генерации практически совпадает с резонансной частотой LC-контура и описывается стандартной формулой F= 1/2π√ LС .


Рис.1

Рис.2

Рис.3

Рис.4

Рис.5

Формулы для расчёта частоты рассматриваемых генераторов соответствуют напряжению питания 5В и температуре окружающей среды 25°С.
Нагрузочная способность генераторов такая же, как у элементов применяемых серий микросхем.
Нижний предел сопротивления резистора R1 соответствует приблизительной величине — не менее 1кОм, верхний — десятки МОм.

«Спасибо начальнику транспортного цеха! У нас есть вопросы к докладчику?»

Вопросов к докладчику не имеем, можно переходить к таблице для расчёта номиналов элементов генератора, исходя из заданной частоты генерации.

Схему, приведённую на Рис.5, из калькулятора вычёркиваем по причине существования ранее разработанной таблицы ссылка на страницу, позволяющей рассчитать элементы резонансного LC-контура для высоких и низких частот. Там же высчитывается и величина волнового (оно же — характеристическое) сопротивления получившегося LC-контура.

Для остальных схем, для получения на выходе предсказуемой формы сигнала со скважностью близкой к двум, рекомендую выбирать значение сопротивления резистора R1 от 10к и выше.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ.

Выбор схемы генератора &nbsp

Сопротивление резистора R1 (кОм)

Частота генератора F Ёмкость конденсатора С1 Период повторения импульсов t

Все представленные характеристики генераторов получены в результате экспериментов вышеуказанного уважаемого автора с конкретными образцами микросхем. С другими экземплярами микросхем характеристики могут быть несколько отличными.

Скважность импульсов описанных генераторов близка к двум, ну а генераторы импульсов с раздельной установкой длительности импульсов и паузы между ними рассмотрим на следующей странице.

Источник

Генератор на К561ЛА7 с регулировкой частоты

Цифровые микросхемы могут реализовывать не только математическую логику. Один из примеров альтернативного функционала – генераторы тактовых импульсов.

В самом простейшем виде генератор представляет собой ни что иное, как колебательный контур, собранный на базе конденсатора и сопротивления (так называемый RC-контур). Однако, такие схемы отличаются низким качеством выходного сигнала и нелинейностью формируемых импульсов.

Придать им правильную «квадратную» форму смогут микросхемы, реализующие простую логику «И-НЕ», такие как К561ЛА7 или аналоги. Но обо всем поподробнее.

Микросхема реализует логику четырёх независимых элементов «И-НЕ» (схема с цоколевкой ниже).

Номинальное напряжение для питания – 10 В, максимальное – не более 15 В.

Может работать практически при любой температуре (от -45 до +85°С), потребляет совсем немного тока (до 0,3 мкА) и имеет небольшое время задержки (80 нс).

К прямым аналогам можно отнести микросхему CD4011A. Однако, в описываемой задаче могут применяться также:

  • К176ЛЕ5 (допустима прямая замена без изменения схемы);
  • Микросхемы из серии К561;
  • К176ПУ2/или ПУ1;
  • А также другие микросхемы, реализующие логику четырёх или более независимых инверторов.

На всякий случай приведем таблицу истинности.

Рис. 2. Таблицу истинности

Простой генератор частоты

Схема, обозначенная ниже, будет формировать меандр (прямоугольные импульсы).

Рис. 3. Схема, которая будет формировать меандр

Фактически можно обойтись и без последнего блока D1.4.

Колебания задаются контуром C1R1, а логические элементы преобразуют синусоидальный сигнал в прямоугольный, отсекая фронты спада и подъема согласно логике инвертирования (есть сигнал на входе, превышающий пороговое значение – выдается на 0, отсутствует – выдается логическая единица).

Недостаток такого генератора – отсутствие возможности регулирования частоты (она фиксированная и определяется номиналом конденсатора с резистором) и влияния на время паузы, длительности импульса (или их соотношение – то есть скважность).

Схема, обозначенная ниже позволяет отдельно регулировать время паузы и длительность импульса.

Рис. 4. Схема, которая позволяет отдельно регулировать время паузы и длительность импульса

За эту логику отвечают настроечные резисторы R2 и R3. Частотный диапазон регулируется незначительно и потому для его кардинальной смены можно предусмотреть включение нескольких конденсаторов разной емкости (на замену C1), включаемых в схему попеременно.

Еще одна версия с возможностью регулирования скважности (основана на схеме все того же мультивибратора).

Рис. 5. Вариант схемы с возможностью регулирования скважности

Схема с различной формой сигнала

Можно назвать ее практически универсальной для различного рода экспериментов с ГТИ (генераторами тактовых импульсов).

Выглядит она следующим образом.

Рис. 6. Схема с различной формой сигнала

Номинал резисторов и конденсаторов не особо принципиален и может быть изменен под свои нужды.

Как видно выше, есть сразу три выхода с прямоугольным сигналом (меандром), треугольным и синусом.

Каждый из них может быть изменен соответствующими подстроечными резисторами.

Мнения читателей

А как считать частоты, по каким формулам?

Вася / 29.02.2020 — 16:45

Виталий, правИльно. Что у Вас в школе по русскому было?

Виталий / 17.05.2019 — 16:50

Подскажите а как увиличить амплитуду сигнала если в первой схеме поставить с1 на 100п например?и как рассчитать правельно резистор?

Антон / 31.08.2018 — 22:04

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Генераторы импульсов на микросхемах КМОП

Генераторы на КМОП логике по принципу построения ничем не отличаются от генераторов на ТТЛ микросхемах, но ввиду малого энергопотребления КМОП микросхемами и гораздо меньших рабочих токов (в частности входных) отличия все же имеются. Прежде всего, для генераторов КМОП логики характерны большие величины времязадающих резисторов (десятки и сотни кОм в отличие от сотен Ом для ТТЛ) и малые емкости конденсаторов. К примеру, классическая схема генератора (рис.1), собранная на 561 серии при сопротивлении резистора менее 1 кОм вообще не запустится.

Ниже у МОП генераторов получится и максимальная частота генерации, которая ограничена верхней частотой переключения МОП элементов (обычно до 2 МГц). Причем эта частота падает при снижении напряжения питания. Достоинством же генераторов на КМОП микросхемах можно считать широкий диапазон питающих напряжений (для 561 серии напряжение питания может лежать в диапазоне от 2 до 12 В, тогда как ТТЛ логика достаточно жестко привязана к напряжению питания 5В, 10% погрешность). Плюс малые величины, а значит и габариты времязадающих конденсаторов и, главное, очень малое энергопортебление (1 мА и менее).

Если требуется повысить стабильность частоты генерации, то имеет смысл применить схему на трех инверторах.

Ну и еще более стабильными получатся генераторы, в качестве частотозадающего элемента в которых используется индуктивность. В этом случае схема простейшего мультивибратора будет выглядеть так:

Из-за того, что переключение логического элемента не происходит ровно при половине питающего напряжения, длительность импульса простого КМОП генератора сильно отличается от длительности паузы. При необходимости получить четкий меандр со скважностью 2, придется использовать более сложную схему:

Здесь длительность паузы и длительность импульса можно изменять независимой подборкой сопротивлений R1 и R2.

Следующие две схемы позволяют оперативно регулировать либо длительности импульса и паузы раздельно (рисунок а), либо менять скважность (одновременное уменьшение одной характеристики с увеличением другой):

Вообще же для получения идеально четкой скважности 2 лучше использовать счетный триггер, подключенный к выходу мультивибратора, настроенного на частоту вдвое большую, чем необходимо получить.

Есть вариант получения скважности 2 или так называемого «меандра» и проще. Для этого придется собрать симметричный мультивибратор на микросхеме К561ТЛ1. При равенстве сопротивлений и емкостей в плечах, такой генератор будет выдавать четкий «прямоугольник» со скважностью 2.

Частоту генерации можно определить по следующей формуле: F=1.05/R1*C1, где F – частота в килогерцах, R – сопротивление резистора R1 = R2 в килоомах, С – емкость конденсатора C1=C2 в микрофарадах. Мультивибратор может быть собран и на микросхемах К561ЛЕ5 или К561ЛА7, однако фронт и спад импульсов в этом случае будет несколько завален.

А вот еще несколько схем симметричных мультивибраторов:

Ну и когда к стабильности частоты предъявляются совсем уже жесткие требования, то как и в случае с ТТЛ-генераторами, без кварцевого резонатора не обойтись:

Обратите внимание, что в частотозадающую цепь может быть подключен подстроечный конденсатор небольшой емкости, позволяющий слегка изменять частоту генерации. Стабильность же при этом будет все равно зависеть от стабильности кварцевого резонатора.

Источник

Генераторы

Функциональный генератор на К561ЛА7

Функциональными генераторами принято называть генераторы способными выдавать сразу несколько видов сигналов, например, прямоугольных, треугольных и синусоидальных.Разнообразие форм сигналов таких генераторов позволяют использовать их для тестирования, отладки и исследования самой разнообразной электронной аппаратуры.

Структурная схема функционального генератора изображена на рис. 161. Работает он следующим образом: постоянное напряжение с выхода триггера Шмитта поступает на интегратор, на выходе которого формируется линейно-изменяющееся напряжение (в зависимости от того, в каком состоянии находится триггер, напряжение возрастает или уменьшается). Триггер имеет два порога срабатывания — верхний и нижний. При достижении одного из них триггер Шмитта срабатывает, напряжение на его выходе (а значит, и на входе интегратора) изменяется, начинается формирование второй ветви треугольного напряжения. Амплитуда треугольного напряжения определяется разностью пороговых напряжений триггера, а частота — постоянной времени интегратора и значениями пороговых напряжений триггера (чем меньше разница пороговых напряжений, тем быстрее будет переключаться триггер). Если требуется сформировать пилообразное (несимметричное треугольное) напряжение, то необходимо автоматически изменять постоянную времени интегрирования при смене знака производной треугольного напряжения.

Схема функционального генератора существенно упрощается, если интегратор, триггер и формирователь синусоидального напряжения выполнить на операционных усилителях. При этом уменьшается количество радиоэлементов, повы-

Рис. 161. Структурная схема функционального генератора

шается повторяемость, уменьшается объем регулировок. В простых генераторах вместо ОУ обычного типа можно использовать инверторы КМОП-микросхем. Известно, что если .инвертор с помощью внешних элементов перевести в активный режим, он превращается в инвертирующий усилитель с коэффициентом передачи от нескольких десятков до нескольких сотен.

Для построения функционального генератора оказывается достаточно одной микросхемы K176ЛA7 или аналогичной. На одном элементе 2И-НЕ (входы объединены и он превращен в инвертор) выполняется интегратор, на двух, соединенных последовательно, — триггер Шмитта, и еще один четвертый элемент используется в блоке формирования синусоидального сигнала.

Принципиальная схема одного из вариантов простого функционального генератора приведена на рис. 162. Триггер Шмитта выполнен по традиционной схеме на инверторах DD1.2 и DD1.3. Инвертор DD1.1 используется в интеграторе, a DD1.4 — в формирователе синусоидального напряжения.

Частота функционального генератора регулируется переменным резистором R4. Для изменения коэффициента заполнения (скважности) прямоугольного сигнала и симметрии треугольного и синусоидального сигналов служит цепь VD2, VD3, R5. Перемещая движок переменного резистора R5, можно изменять постоянные времени заряда и разряда хронирующего конденсатора С2 интегратора, изменяя тем самым постоянные времени интегратора для каждой ветви треугольного напряжения, а значит, и скважность прямоугольных импульсов и симметрию синусоидального сигнала. Конденсатор СЗ — антипаразитный, его величина подбирается по отсутствию на треугольном напряжении выбросов и нелинейности. Элемент DD1.4 формирует из треугольных импульсов трапецеидальные. В силу особенностей вольт-амперных характеристик полевых транзисторов, входящих в состав КМОП-инвертора, углы трапецеидальных импульсов слажены, и их форма близка к синусоиде.

Для получения наилучшей формы синусоиды треугольное напряжение должно быть строго симметрично, поэтому при работе с синусоидальным сигналом не-

Рис. 162, Принципиальная схема простого функционального генератора

обходимо корректировать его форму не только переменным резистором R6 «Форма», которым регулируется коэффициент усиления ОУ на элементе DD1.4, но и потенциометром R5 «Симметрия». Коэффициент гармоник синусоидального напряжения на выходе элемента DD1.4 велик — до 10% и даже более, поэтому для окончательного формирования синусоиды вслед за DD1.4 включен однозвенный фильтр нижних частот R12C4 с частотой среза примерно 1,4 кГц.

На каждом из трех выходов функционального генератора установлены делители напряжения, с помощью которых выравниваются амплитуды прямоугольного, треугольного и синусоидального сигналов. Чтобы выходное сопротивление генератора было одинаково по всем трем выходам, сопротивление нижнего по схеме плеча делителей выбрано одинаковым, равным 12 кОм. Выходное сопротивление генератора довольно велико — около 10 кОм, поэтому желательно, чтобы входное сопротивление проверяемых устройств было не менее 100 кОм, в противном случае амплитуда выходного сигнала будет зависеть от значения входного сопротивления. Если это нежелательно — выходное сопротивление генератора можно понизить, уменьшив пропорционально сопротивление резисторов делителей. На выходах генератора отсутствуют разделительные конденсаторы, поэтому выходные сигналы однополярны. При работе с устройствами, на входе которых нет разделительных конденсаторов и постоянная составляющая выходного сигнала генератора нарушает их нормальную работу, конденсаторы можно включить в разрыв сигнального провода.

Следует отметить, что несмотря на то, что частоту функционального генератора можно изменять в довольно широких пределах, делать это нецелесообразно. Во-первых, для проверки основных характеристик большинства радиоэлектронных узлов достаточно изучить прохождение прямоугольных и треугольных импульсов фиксированной частоты, во-вторых, в простейших функциональных генераторах, а именно к ним и относится рассматриваемый генератор, при изменении частоты одновременно изменяется и скважность (симметрия) сигнала, а при корректировке симметрии несколько изменяется частота. В результате перестройки частоты требует манипуляций двумя ручками, что неудобно уже само по себе и, кроме того, сужается диапазон перестройки, в пределах которого остается неизменной скважность (симметрия) выходного сигнала. Наиболее приемлемым представляется работа с функциональным генератором, настроенным «а одну фиксированную частоту.

Для проверки устройства звукового диапазона частот в качестве опорной удобно взять частоту 1 кГц или, например, для проверки магнитофонов 400 Гц.. Известно, что для удовлетворительной передачи прямоугольных импульсов со скважностью 2 (меандр) полоса пропускания тракта должна по крайней мере на порядок превышать частоту следования импульсов. При большей скважности требуется еще большая полоса пропускания тракта. Таким образом, по искажению формы прямоугольных импульсов можно судить о полосе пропускания проверяемого тракта и при необходимости вносить коррективы. Малые габаритные размеры, экономичность и простота функционального генератора позволяют встраивать его непосредственно в аппаратуру —в магнитофон, усилитель звуковой частоты, измерительный прибор и т. д. — и использовать при контрольных проверках.

Функциональный генератор, схема которого приведена на рис. 162, имеет следующие параметры:

Количество выходных сигналов. 3 (прямоуголь

ный, ‘треугольный, синусоидальный

Рабочая частота, Гц. 1000±350

Амплитуда прямоугольного, треугольного и синусоидального

Эффективное значение синусоидального сигнала, В 0,2

Коэффициент гармоник синусоидального сигнала, % . . 2

Длительность фронтов прямоугольного сигнала, мкс. . 5

Нелинейность треугольного сигнала, % . 3

Ток, потребления от источника питания напряжением 12 В, мА. 12

При необходимости функциональный генератор можно сделать многодиапазонным, для этого достаточно установить переключатель диапазонов, коммутирующий конденсаторы С2, С4 и СЗ, емкость которых нужно подобрать для каждого диапазона.

Функциональный генератор смонтирован на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 1,5. 2 мм. Плата для однодиапазонного варианта генератора имеет размеры 40X100 мм, ее чертеж изо-

Рис. 163. Чертеж платы для однодиапазонного варианта генератора: а — расположение проводников; б — расположение деталей

бражен на рис. 163,а, а расположение деталей —на рис. 163,6. Печатная плата рассчитана на применение резисторов МЛТ мощностью 0,25 Вт, конденсаторов КМ-6 (С2—С4) и К50-6 (С1), переменных резисторов СП4-1, диодов КД503Б (VD2, VD3), стабилитрона КС156А (VD1), интегральной микросхемы К176ЛА7 (DD1).

Схема некритична к параметрам и типам применяемых радиодеталей. Резисторы и конденсаторы могут быть любых типов, желательно только, чтобы конденсатор С2 имел минимально возможный ТКЕ. Вместе К176ЛА7 можно использовать без изменения рисунка печатной платы микросхему К176ЛЕ5. Допустимо применение К176ПУ1, К176ПУ2, а также других КМОП-микросхем, содержащих не менее четырех инверторов, в частности микросхем серии К561. При этом, естественно, придется изменить рисунок печатной платы. Необходимо также учитывать специфику некоторых серий. Так, например, микросхемы серии К561 можно питать стабилизированным напряжением от 3 до 15 В. Следует отметить, что •несмотря на то, что номинальное напряжение питания микросхем серии К176 равно 9 В, большинство из них устойчиво работает и при пониженном напряжении питания, что позволило питать функциональный генератор напряжением 5,6 В. Это напряжение некритично и при необходимости (например, с целью увеличения амплитуды выходного сигнала) напряжение питания можно увеличить, заменив стабилитрон КС156А (VD1) на более высоковольтный.

Работать с генератором несложно. Различные виды сигналов треугольной формы удобны при проверке линейности амплитудной характеристики и динамического диапазона устройства — на прямых, с четкими перегибами ветвях треугольного сигнала гораздо лучше, чем на синусоиде, заметны искажения типа «ограничение», «ступенька» и т. п. На фронтах прямоугольного сигнала и на треугольном сигнале хорошо заметны микровозбуждения проверяемого устройства, проявляющиеся в виде выбросов.

Синусоидальный сигнал полезен при измерении коэффициентов усиления каскадов, калибровке индикаторов и т. п.

Источник

Читайте также:  Регулировка птф на лансере 10
Adblock
detector