Меню

Двухтактный блокинг генератор с регулировкой частоты импульсов схема



Блокинг генератор. Схема, устройство.

Схема и устройство блокинг генератора (10+)

Блокинг генератор — Схема, устройство

Схема, устройство блокинг генератора.

Транзистор VT1 — выбор транзистора зависит от применения блокинг генератора. Решающими факторами являются максимально допустимое напряжение коллектор-эмиттер, максимальный ток коллектора и максимальная рассеиваемая мощность.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Резистор R1 — Резистор смещения. Его подбирают так, чтобы возникало самовозбуждение устройства. Его значения зависят от коэффициента передачи тока транзистора, параметров трансформатора и нагрузки. Я обычно начинаю подбор со 100 кОм, постепенно уменьшаю его сопротивление. Кроме того, сопротивление этого резистора влияет на время между импульсами. Его уменьшение ведет к уменьшению паузы между импульсами.

Резистор R2, Конденсатор C1 — Эти радиодетали вместе с резистором R1 определяют частоту работы генератора. Кроме того, R2 должен быть таким, чтобы транзистор работал в режиме насыщения. Выбираю [Сопротивление R2] = 2 * [Напряжение на обмотке 1 при напряжении на обмотке 2, равном питанию] * [Коэффициент передачи тока транзистора VT1] / [Максимально возможный ток через транзистор VT1]. Емкость конденсатора C1 влияет на длительность импульса и длительность паузы. Увеличение емкости приводит к увеличению длительностей импульса и паузы.

Обмотка 1 трансформатора — выбираем [число витков обмотки 1] = 10 * [число витков обмотки 2] / [напряжение питания]. В этом случае в цепь обратной связи будет подаваться напряжение 10 вольт, что подходит для нормальной работы схемы.

Обмотка 2 трансформатора — число витков подбирается так, чтобы за время нахождения транзистора в открытом состоянии трансформатор не входил в состояние насыщения.

В приведенной схеме трансформатор используется с зазором. Если генератор совсем маломощный, сердечник у трансформатора ферритовый, токи и напряжения малы, а число витков большое, то иногда можно использовать трансформатор без зазора. Если же сердечник из железа, или имеют место достаточно большие токи подмагничивания, то зазор делать обязательно. Я всегда делаю зазор. Работа генератора предполагает размагничивание сердечника в моменты, когда трансформатор отключен от источника питания, но при отсутствии зазора магнитный гистерезис сердечника может быть столь велик, что размагничивание не будет происходить, сердечник окончательно намагнитится и войдет в насыщение.

Подробно останавливаться на расчете трансформатора не буду, но скажу, что зазор можно использовать совсем небольшой. 0.2 мм вполне подойдет.

Для целей размагничивания используется также обмотка 3. Обмотка 2 представляет собой некоторую катушку индуктивности. В результате приложения к ней на некоторое время напряжения, по ней начинает протекать ток, и накапливается энергия. Когда транзистор закрывается, этот ток не может прекратиться моментально. Необходимо куда-то деть накопленную энергию, иначе бросок напряжения выведет из строя транзистор. Можно, конечно, поглотить эту энергию, например, резистором в цепи базы, но это плохо скажется на КПД. Обмотка 3 подключена так, чтобы в ситуации, когда обмотка 2 запитана от источника (транзистор открыт), обмотка 3 была отключена от источника питания. Когда транзистор закрывается, на обмотке 2 возникает напряжение противоположной полярности. Тогда через обмотку 3 начинает идти ток, который возвращает энергию, накопленную в магнитном поле сердечника в цепи питания.

Обмотка 3 может не применяться, если есть уверенность, что нагрузка, подключенная к выходу, поглотит всю энергию индуктивного броска, например, в схемах обратноходового преобразователя напряжения.

Обмотка 3 трансформатора — число витков определяется максимально возможным отношением длительности открытого состояния транзистора к длительности закрытого. [Число витков обмотки 3] = 0.9 * [Число витков обмотки 2] * [Длительность закрытого состояния] / [Длительность открытого состояния]. Коэффициент 0.9 применяется для запаса, чтобы наверняка обеспечить размагничивание сердечника.

[Максимальное напряжение на транзисторе VT1] = [Напряжение питания] * (1 + [Число витков обмотки 2] / [Число витков обмотки 3]) + [Выброс напряжения, обусловленный индуктивностью связи этих обмоток]. Подробнее от индуктивности связи, утечки.

Диод VD1 — защищает переход база — эмиттер транзистора от высокого напряжения обратной полярности. Имеет смысл применять диод, рассчитанный на ток, равный отношению напряжения на обмотке 1 к сопротивлению резистора R2.

Диод VD2 — Участвует в отводе тока размагничивания. Рассчитывая трансформатор, Вы вычислите ток намагничивания. Диод должен быть рассчитан на ток, равный току намагничивания, поделить на число витков в обмотке 3, умножить на число витков в обмотке 2. [Максимальное напряжение на диоде VD2] = [Напряжение питания] * (1 + [Число витков обмотки 3] / [Число витков обмотки 2])

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Источник

Лестница Иакова на двухтактном блокинг генераторе

Данная конструкция собрана на основе двухтактного блокинга, который я собрал по подобию схемы на полевых транзисторах, лишь заменив их биполярными КТ808А, так как полевики имеют плохое свойство пробиваться.

Начнем с блока питания: в качестве такового можно выбрать любой от ноутбука, благо в нем есть всевозможные защиты от нестабильности и это может пригодиться.

Итак, приступаем к сборке блокинг генератора. Сначала я пробовал транзисторы IRL3705, но их пробило, затем в ход пошли биполярные КТ805А, но они оказались слишком слабы и их постигла та же участь. Остановился я на КТ808А — и был доволен результатом их работы и производительности всей схемы. Нужно поставить хотя бы среднего размера радиаторы, хорошо смазав низ транзисторов термопастой, я использовал КПТ-8 и она не подвела. Задающие частоту резисторы я взял номиналом 100 Ом, как и в однотактной схеме, на 2 Вт — превратились в угольки за минуту, так что лучше устанавливать от 25 Вт цементные или еще лучше силовые на 50-100 Вт. Цементные сильно греются, но до пагубного порога температуры минут за 5-10 не доходят, а дольше я не включал.

Читайте также:  Клапан регулировки потока в смесительном узле tim

Переходим к сердцу нашей схемы лестницы — строчному трансформатору. Выбор строчника не критичен. Лучше выбирать без лака, а то будет куча проблем по его счистке. Мной был взят трансформатор ТВС 90 пц 10, первичка полностью удаленна. У вторички убран выход и к его месту аккуратно припаян провод, чтобы избежать внутреннего возгорания и удобней наматывать сверху вторичку. Ее мы мотаем 7 мотками любым относительно толстым проводом, главное, чтобы было удобно мотать, делаем отвод от середины и присоединяем его к плюсу блока питания, а боковые выходы — к коллекторам транзисторов.

К любому из трех выходов можно подсоединить один разрядник лестницы, ну а второй к выходу, что мы аккуратно припаивали. Разряд пролетает не сам, а если провести между электродами железным предметом — далее дуга увеличится сама.

Источник

Преобразователи напряжения

Автогенераторные преобразователи напряжения (блокинг-генераторы)

Автогенераторные преобразователи напряжения
(блокинг-генераторы)

В генераторах с самовозбуждением (автогенераторах) для возбуждения электрических колебаний обычно используется положительная обратная связь. Существуют также автогенераторы на активных элементах с отрицательным динамическим сопротивлением, однако в качестве преобразователей они практически не используются.
Наиболее простая схема однокаскадного преобразователя напряжения на основе автогенератора показана на рис. 9.1. Этот вид генераторов получил название блокинг-генераторов. Фазовый сдвиг для обеспечения условия возникновения колебаний в нем обеспечивается определенным включением обмоток.

Рис. 9.1. Схема преобразователя напряжения с трансформаторной обратной связью

Аналог транзистора 2N3055 — КТ819ГМ.

Блокинг-генератор позволяет получать короткие импульсы при большой скважности. По форме эти импульсы приближаются к прямоугольным. Емкости колебательных контуров блокинг-генератора, как правило, невелики и обусловлены межвитковыми емкостями и емкостью монтажа. Предельная частота генерации блокинг-генератора — сотни кГц. Недостатком этого вида генераторов является выраженная зависимость частоты генерации от изменения питающего напряжения.

Резистивный делитель в цепи базы транзистора преобразователя (рис. 9.1) предназначен для создания начального смещения.

Несколько видоизмененный вариант преобразователя с трансформаторной обратной связью представлен на рис. 9.2.

Рис. 9.2. Схема основного (промежуточного) блока источника высоковольтного напряжения на основе автогенераторного преобразователя

Автогенератор работает на частоте примерно 30 кГц. На выходе преобразователя формируется напряжение амплитудой до 1 кВ (определяется числом витков повышающей обмотки трансформатора).

Трансформатор Т1 выполнен на диэлектрическом каркасе, вставляемом в броневой сердечник Б26 из феррита М2000НМ1 (М1500НМ1). Первичная обмотка содержит 6 витков; вторичная обмотка — 20 витков провода ПЭЛШО диаметром 0,18 мм (0,12…0,23 мм). Повышающая обмотка для достижения выходного напряжения величиной 700…800 В имеет примерно 1800 витков провода ПЭЛ диаметром 0,1 мм. Через каждые 400 витков при намотке укладывается диэлектрическая прокладка из конденсаторной бумаги, слои пропитывают конденсаторным или трансформаторным маслом. Места выводов катушки заливают парафином.

Этот преобразователь может быть использован в качестве промежуточного для питания последующих ступеней формирования вьюокого напряжения (например с электрическими разрядни­ками или тиристорами).

Следующий преобразователь напряжения (США) также выполнен на одном транзисторе (рис. 9.3). Стабилизация напряжения смещения базы осуществляется тремя последовательно включенными диодами VD1 — VD3 (прямое смещение).

Рис. 9.3. Схема преобразователя напряжения с трансформаторной обратной связью

Коллекторный переход транзистора VT1 защищен конденсатором С2, кроме того, параллельно коллекторной обмотке трансформатора Т1 подключена цепочка из диода VD4 и стабилитрона VD5.

Генератор вырабатывает импульсы, по форме близкие к прямоугольным. Частота генерации составляет 10 кГц и определяется величиной емкости конденсатора СЗ.

Аналог транзистора 2N3700 — КТ630А.

Схема двухтактного трансформаторного преобразователя напряжения показана на рис. 9.4. Аналог транзистора 2N3055 — КТ819ГМ.

Трансформатор высоковольтного преобразователя (рис. 9.4) может быть выполнен с использованием ферритового незамкнутого сердечника круглого или прямоугольного сечения, а также на основе телевизионного строчного трансформатора. При использовании ферритового сердечника круглой формы диаметром 8 мм число витков вьюоковольтной обмотки в зависимости от требуемой величины выходного напряжения может достигать 8000 витков провода диаметром 0,15…0,25 мм. Коллекторные обмотки содержат по 14 витков провода диаметром 0,5…0,8 мм. Обмотки

Рис. 9.4. Схема двухтактного преобразователя с трансформа торной обратной связью

Рис. 9.5. Вариант схемы высоковольтного преобразователя с трансформаторной обратной связью

обратной связи (базовые обмотки) содержат по 6 витков такого же провода. При подключении обмоток следует соблюдать их фазировку. Выходное напряжение преобразователя — до 8 кВ.

В качестве транзисторов преобразователя могут быть использованы транзисторы отечественного производства, например, КТ819 и им подобные.

Вариант схемы аналогичного преобразователя напряжения показан на рис. 9.5 . Основное различие заключается в цепях подачи смещения на базы транзисторов.

Число витков первичной (коллекторной) обмотки — 2×5 витков диаметром 1,29 мм; вторичной — 2×2 витков диаметром 0,64 мм. Выходное напряжение преобразователя целиком определяется числом витков повышающей обмотки и может достигать 10…30 кВ.

Преобразователь напряжения А. Чаплыгина не содеpжит резисторов (рис. 9.6). Он питается от батареи напряжением 5 В и способен отдавать в нагрузку до 1 А при напряжении 12 В.

Рис. 9.6. Схема простого высокоэффективного преобразователя напряжения с питанием от батареи 5 В

Диодами выпрямителя служат переходы транзисторов автогенератора.

Устройство способно работать и при пониженном до 1 В напряжении питания. Для маломощных вариантов преобразователя можно использовать транзисторы типа КТ208, КТ209, КТ501 и другие. Максимальный ток нагрузки не должен превышать максимального тока базы транзисторов.

Читайте также:  Установка регулировка деревянных дверей

Диоды VD1 и VD2 — не обязательны, однако позволяют получить на выходе дополнительное напряжение 4,2 В отрицательной полярности. КПД устройства около 85%.

Трансформатор Т1 выполнен на кольце К18×8×5 2000НМ1. Обмотки I и II имеют по 6, III и IV — по 10 витков провода ПЭЛ-2 0,5.

Преобразователь напряжения (рис. 9.7) выполнен по схеме индуктивной трехтонки и предназначен для измерений высокоомных сопротивлений и позволяет получить на выходе нестабилизированное напряжение 120… 150 В [9.5]. Потребляемый преобразователем ток около 3…5 мА при напряжении питания 4,5 В. Трансформатор для этого устройства может быть создан на основе телевизионного трансформатора БТК-70. Его вторичную обмотку удаляют, взамен нее наматывают низковольтную обмотку преобразователя — 90 витков (два слоя по 45 витков) провода ПЭВ-1 0,19…0,23 мм. Отвод от 70-го витка снизу по схеме. Резистор R1 —величиной 12…51 кОм.

Рис. 9.7. Схема преобразователя напряжения по схеме индуктивной трехточки

Рис. 9.8. Схема преобразователя напряжения 1,5 В/-9 В

Преобразователь (рис. 9.8) представляет собой однотактный релаксационный генератор с емкостной положительной обратной связью (02, СЗ). В коллекторную цепь транзистора VT2 включен повышающий автотрансформатор Т1. В преобразователе использовано обратное включение выпрямительного диода VD1, т.е. при открытом транзисторе VT2 к обмотке автотрансформатора приложено напряжение питания Uп, и на выходе автотрансформатора появляется импульс напряжения. Однако включенный в обратном направлении диод VD1 в это время закрыт, и нагрузка отключена от преобразователя.

В момент паузы, когда транзистор закрывается, полярность напряжения на обмотках Т1 изменяется на противоположную, диод VD1 открывается, и выпрямленное напряжение прикладывается к нагрузке. При последующих циклах, когда транзистор VT2 запирается, конденсаторы фильтра (С4, С5) разряжаются через нагрузку, обеспечивая протекание постоянного тока. Индуктивность повышающей обмотки автотрансформатора Т1 при этом играет роль дросселя сглаживающего фильтра.

Для устранения подмагничивания сердечника автотрансформатора постоянным током транзистopa VT2 используется перемагничивание сердечника автотрансформатора за счет включения параллельно его обмотке конденсаторов С2 и СЗ, которые одновременно являются делителем напряжения обратной связи. Когда транзистор VT2 закрывается, конденсаторы С2 и СЗ в течение паузы разряжаются через часть обмотки трансформатора, перемагничивая сердечник Т1 током разряда.

Частота генерации зависит от напряжения на базе транзистора VT1. Стабилизация выходного напряжения осуществляется за счет отрицательной обратной связи (ООС) по постоянному напряжению посредством R2. При понижении выходного напряжения увеличивается частота генерируемых импульсов при примерно одинаковой их длительности. В результате увеличивается частота подзарядки конденсаторов фильтра С4 и С5 и падение напряжения на нагрузке компенсируется. При увеличении выходного напряжения частота генерации, наоборот, уменьшается. Так, после заряда накопительного конденсатора С5 частота генерации падает в десятки раз. Остаются лишь редкие импульсы, компенсирующие разряд конденсаторов в режиме покоя. Такой способ стабилизации позволил уменьшить ток покоя преобразователя до 0,5 мА.

Транзисторы VT1 и VT2 должны иметь возможно больший коэффициент усиления для повышения экономичности. Обмотка автотрансформатора намотана на ферритовом кольце К10×6×2 из материала 2000НМ и имеет 300 витков провода ПЭЛ-0,08 с отводом от 50-го витка (считая от «заземленного» вывода). Диод VD1 должен быть вьюокочастотным и иметь малый обратный ток.

Налаживание преобразователя сводится к установке выходного напряжения равным -9 В путем подбора резистора R2.

На рис. 9.9 показана схема преобразователя стабилизированного напряжения с широтно-импульсным управлением . Преобразователь сохраняет работоспособность при уменьшении напряжения батареи с 9….12 до 3 В. Такой преобразователь оказывается наиболее пригодным при батарейном питании аппаратуры.

кпд стабилизатора — не менее 70%. Стабилизация сохраняется при уменьшении напряжения источника питания ниже выходного стабилизированного напряжения преобразователя, чего не может обеспечить традиционный стабилизатор напряжения. Принцип стабилизации, использованный в данном преобразователе напряжения.

При включении преобразователя ток через резистор R1 от­крывает транзистор VT1, коллекторный ток которого, протекая че­рез обмотку II трансформатора Т1, открывает мощный транзистор VT2. Транзистор VT2 входит в режим насыщения, и ток через обмотку I трансформатора линейно увеличивается. В трансформаторе происходит накопление энергии. Через некоторое время транзистор VT2 переходит в активный режим, в обмотках трансформатора возникает ЭДС самоиндукции, полярность которой противоположна приложенному к ним напряжению (магнитопровод трансформатора не насыщается). Транзистор VT2 лавинообразно закрывается и ЭДС самоиндукции обмотки I через диод VD2 заряжает конденсатор СЗ. Конденсатор С2 способствует более четкому закрыванию транзистора. Далее процесс повторяется.

Через некоторое время напряжение на конденсаторе СЗ увеличивается настолько, что открывается стабилитрон VD1, и базовый ток транзистора VT1 уменьшается, при этом уменьшается ток базы, а значит, и коллекторный ток транзистора VT2. Поскольку накопленная в трансформаторе энергия определяется коллекторным током транзистора VT2, дальнейшее увеличение

Рис. 9.9. Схема преобразователя стабилизированного напряжения

напряжения на конденсаторе СЗ прекращается. Конденсатор разряжается через нагрузку. Таким образом на выходе преобразователя поддерживается постоянное напряжение.

Выходное напряжение задает стабилитрон VD1. Частота преобразования изменяется в пределах 20… 140 кГц.

Преобразователь напряжения [9.7], схема которого показана на рис. 9.10, отличается тем, что в нем цепь нагрузки гальванически развязана от цепи управления. Это позволяет получить несколько вторичных стабильных напряжений. Использование интегрирующего звена в цепи обратной связи позволяет улучшить стабилизацию вторичного напряжения.

Рис. 9.10. Схема преобразователя стабилизированного напряжения с биполярным выходом

Читайте также:  Как и когда регулируют клапана на приоре

Частота преобразования уменьшается почти линейно при уменьшении питающего напряжения. Это обстоятельство усиливает обратную связь в преобразователе и повышает стабильность вторичного напряжения. Напряжение на сглаживающих конденсаторах вторичных цепей зависит от энергии импульсов, получаемых от трансформатора. Наличие резистора R2 делает напряжение на накопительном конденсаторе СЗ зависимым и от частоты следования импульсов, причем степень зависимости (крутизна) определяется сопротивлением этого резистора. Таким образом, подстроенным резистором R2 можно устанавливать желаемую зависимость изменения напряжения вторичных обмоток от изменения напряжения питания. Полевой транзистор VT2 — стабилизатор тока. КПД преобразователя может доходить до 70… 90%.

Нестабильность выходного напряжения при напряжении питания 4… 12 В не более 0,5%, а при изменении температуры окружающего воздуха от -40 до +50°С — не более 1,5%. Максимальная мощность нагрузки — 2 Вт.

При налаживании преобразователя резисторы R1 и R2 устанавливаются в положение минимального сопротивления и подключают эквиваленты нагрузок Rн. На вход устройства подается напряжение питания 12 В и с помощью резистора R1 на нагрузке Rн устанавливается напряжение 15 В. Далее напряжение питания уменьшают до 4 В и резистором R2 добиваются напряжения на выходе также 15 В. Повторяя этот процесс несколько раз, добиваются стабильного напряжения на выходе.

Обмотки I и II и магнитопровод трансформатора у обоих вариантов преобразователи одинаковы. Обмотки намотаны на броневом магнитопроводе Б26 из феррита 1500НМ. Обмотка I содержит 8 витков провода ПЭЛ 0,8, а II — 6 витков провода ПЭЛ 0,33 (каждая из обмоток III и IV состоит из 15 витков провода ПЭЛ 0,33 мм).

Рис. 9.11. Схема понижающего преобразователя напряжения на основе блокинг-генератора

Схема простого малогабаритного преобразователя сетево­го напряжения, выполненного из доступных элементов, показана на рис. 9.11. В основе устройства обычный блокинг-генератор на транзисторе VT1 (КТ604, КТ605А, КТ940).

Трансформатор Т1 намотан на броневом сердечнике Б22 из феррита М2000НН. Обмотки Iа и Ib содержат 150+120 витков провода ПЭЛШО 0,1 мм. Обмотка II имеет 40 витков провода ПЭЛ 0,27 мм; III — 11 витков провода ПЭЛШО 0,1 мм. Вначале наматывается обмотка Iа, затем — II, после — обмотка Ib, и, наконец, обмотка III.

Источник питания не боится короткого замыкания или обрыва в нагрузке, однако имеет большой коэффициент пульсаций напряжения, низкий КПД, небольшую выходную мощность (до 1 Вт) и значительный уровень электромагнитных помех. Питать преобразователь можно и от источника постоянного тока напряжением 120 Б. В этом случае резисторы R1 и R2 (а также диод VD1) следует исключить из схемы.

Слаботочный преобразователь напряжения для питания газоразрядного счетчика Гэйгера-Мюллера может быть собран по схеме на рис. 9.12. Преобразователь представляет собой транзисторный блокинг-генератор с дополнительной повышающей обмоткой. Импульсы с этой обмотки заряжают конденсатор СЗ через выпрямительные диоды VD2, VD3 до напряжения 440 В. Конденсатор СЗ должен быть либо слюдяным, либо керамическим, на рабочее напряжение не ниже 500 В. Длительность импульсов блокинг-генератора примерно 10 мкс. Частота следования импульсов (десятки Гц) зависит от постоянной времени цепи R1, 02.

Рис. 9.12. Схема слаботочного преобразователя напряжения для питания газоразрядного счетчика Гейгера-Мюллера

Магнитопровод трансформатора Т1 изготавливают из двух склеенных вместе ферритовых колец К16×10×4,5 ЗОООНМ и изолируют его слоем лакоткани, тефлона или фторопласта. Вначале наматывают внавал обмотку III — 420 витков провода ПЭВ-2 0,07, заполняя магнитопровод равномерно. Поверх обмотки III накладывают слой изоляции. Обмотки I (8 витков) и II (3 витка) наматывают любым проводом поверх этого слоя, их также следует возможно равномернее распределить по кольцу.

Следует обратить внимание на правильную фазировку обмоток, она должна быть выполнена до первого включения.

При сопротивлении нагрузки порядка единиц МОм преобразователь потребляет ток 0,4… 1,0 мA.

Преобразователь напряжения (рис. 9.13) предназначен для питания фотовспышки. Трансформатор Т1 выполнен на магнитопроводе из двух сложенных вместе пермаллоевых колец К40х28х6. Обмотка коллекторной цепи транзистора VT1 имеет 16 витков ПЭВ-2 0,6 мм; его базовой цепи — 12 витков такого же провода. Повышающая обмотка содержит 400 витков ПЭВ-2 0,2.

Рис. 9.13. Схема преобразователя напряжения для фотовспышки

Неоновая лампа HL1 использована от стартера лампы дневного света.

Выходное напряжение преобразователя плавно повышается на конденсаторе фотовспышки до 200 В за 50 секунд. Устройство при этом потребляет ток до 0,6 А.

Для питания ламп-вспышек предназначен преобразователь напряжения ПН-70, являющийся основой описываемого ниже устройства (рис. 9.14). Обычно энергия батарей преобразователя расходуется с минимальной эффективностью. Вне зависимости от частоты следования вспышек света генератор работает не­прерывно, расходуя большое количество энергии и разряжая батареи.

Рис. 9.14. Схема модифицированного преобразователя напряжения ПН-70

Перевести работу преобразователя в ждущий режим удалось О. Панчику, который включил на выходе преобразователя резистивный делитель R5, R6 и подал сигнал с него через стабилитрон VD1 на электронный ключ, выполненный на транзисторах VT1 — VT3 по схеме Дарлингтона. Как только напряжение на конденсаторе фотовспышки (на схеме не показан) достигнет номинального значения, определяемого значением ре­зистора R6, стабилитрон VD1 пробьется, а транзисторный ключ отключит батарею питания (9 В) от преобразователя. Когда на­пряжение на выходе преобразователя понизится в результате саморазряда или разряда конденсатора на лампу-вспышку, стабилитрон VD1 перестанет проводить ток, произойдет включение ключа и, соответственно, преобразователя.

Транзистор VT1 должен быть установлен на медном радиаторе размерами 50×22×0,5 мм.

Источник

Adblock
detector