Меню

Драйвер для фонаря с плавной регулировкой



Однорежимный светодиодный драйвер для фонаря.

Речь пойдёт о модернизации всем известного фонаря со множеством клонов по цене около 200 руб., который имеет три режима Max-Min-Strob.

В магазине у Саймона можно заказать фонари с разными прошивками режимов. Я, например, когда-то брал Convoy C8 с минимумом режимов Low-Mid-High. Но такое бывает редко, когда у покупателя есть выбор.

Поводом для покупки другого драйвера послужили надоедливые строб-режимы. Может кому-то они и нужны, а мне от дешёвого фонаря требуется только одно горит-не горит.

Можно конечно сделать один мощный режим, используя в нужном месте драйвера перемычку или резистор, но в этом случае не будет стабилизации тока светодиода.
Поэтому и был найден другой драйвер. На фото старый 3-х режимный справа, а новые слева.

Я переделал два фонаря. У одного блок с драйвером легко выкрутился пинцетом за пазы, у другого плоскогубцами через ткань, чтобы не поцарапать.

Новый драйвер имеет диаметр 15,6 мм, а посадочный размер 15,2 мм. Пришлось доработать алмазным надфилем. Подгонять надо аккуратно. «Таблетка» держится за счёт плотной посадки и упирается с обратной стороны только в аккумулятор, и если она будет болтаться, будут проблемы со сборкой и с контактом на корпус.

В качестве люксметра использовался Сёма и программа Light Meter v1.3, измерения однократные с расстояния вытянутой руки.

Фонарь с однорежимным драйвером 2 был испытан:
— с аккумулятором Ni-Mh PKCell/2200 мА-ч в течение часа, температура корпуса 43 град.
— с аккумулятором Li-Ion TrustFire 14500/900 мА-ч в течение 15 минут, далее испытания были прерваны из-за высокой температуры 54 град.

В этом же лоте есть драйвер диаметром 20 мм.
Спасибо за внимание.

Источник

Доработка китайского налобного фонарика, драйвер светодиода на AMC7135

Поступил мне тут заказ от одного хорошего знакомого, который увлекается рыбалкой. У него был простенький налобный фонарик, который обладал рядом недостатков, но полностью устраивал по размерам и внешнему виду. Ну что ж, для хорошего человека — хорошее дело, ну а для меня — просто тренировка мозгов и рук.

Приступим. Для начала выделю преимущества данного фонарика:

  • компактный и легкий корпус;
  • возможность регулировки фокуса;
  • удобное расположение органов управления (кнопка), учитывая что фонарик налобный.

Теперь недостатки, которых куда больше:

  • неудобное управление — три режима которые переключаются по циклическому алгоритму (четвёртый режим «выключено»), то есть если нужный режим пропустил, то надо «прощелкивать» все режимы по кругу, пока не «дощелкаешь» до нужного режима;
  • один из режимов — мигающий — вообще бесполезный, только мешает управлению;
  • нет контроля состояния аккумулятора, то есть при каждом цикле разряда портит аккумулятор, сильно разряжая его (если не выключить, может посадить аккумулятор до 1. 2 вольт);
  • нет стабилизации тока, то есть с разрядом аккумулятора яркость постепенно падает;
  • заряд аккумулятора идет тупо через резистор, нет никакого контроля зарядного тока и отсутствует правильный алгоритм заряда литий-ионного аккумулятора (при каждом цикле заряда гробит аккумулятор);
  • стоИт китайский светодиод с низкой эффективностью;
  • стоИт китайский аккумулятор с завышенной емкостью на этикетке.

Теперь о том, что бы хотелось получить в итоге:

  • удобное управление режимами, убрать мигающий режим;
  • ввести стабилизацию тока через светодиод (поставить драйвер);
  • заменить светодиод на более эффективный и надежный (CREE XPG), тёплого свечения (вместо штатного холодного);
  • сделать контроль разряда аккумулятора, при разряде аккумулятора выключать фонарик;
  • добавить контроллер заряда литий-ионного аккумулятора;
  • заменить аккумулятор на нормальный.

Вскрываем корпус фонарика.

Здесь мы видим, что его «мозги» сделаны на основе БИС микросхемы, поэтому они не поддаются никакой модификации.

При замене светодиода на другой светодиод, выходной ток изменился почти на 50%, что говорит об отсутствии какой либо стабилизации тока. Решено выкинуть родную плату и сделать свою. В качестве управляющего контроллера я выбрал ATtiny13A-SSU ввиду следующих основных преимуществ:

  • малая цена — около 30 рублей (на момент написания статьи, май 2014г.);
  • компактный корпус поверхностного монтажа;
  • в режиме сна потребляет менее 500 наноампер (. );
  • возможность работы при низких напряжениях питания (вплоть до 1.8в);
  • возможность работы при температуре ниже 0 градусов.

В качестве драйвера светодиода выбор пал на AMC7135 благодаря следующим характеристикам:

  • возможность работы при низких напряжениях питания;
  • минимальное падение напряжения на микросхеме — всего 0.15в;
  • возможность ШИМ-регулировки яркости светодиода;
  • компактный корпус.
Читайте также:  Регулировка вилки перевернутого типа

Небольшие пояснения о работе схемы и применяемых компонентах. Для измерения уровня заряда аккумулятора, используется АЦП микроконтроллера и внешний источник опорного напряжения (далее ИОН) REF3125 с выходным напряжением 2,5В. Внешний ИОН используется не просто так — с его помощью достигается измерение напряжения аккумулятора с минимальными погрешностями, так как точность встроенного в микроконтроллер ИОН’а оставляет желать лучшего. Управление AMC7135 производится при помощи ШИМ-сигнала, частотой 500 Гц. При отключении драйвера, микроконтроллер отключает AMC7135, обесточивает ИОН, и переходит в спящий режим «Power Down», потребляя менее 1 мкА. Устройство не требует какой-либо настройки и корректировки, и после сборки и прошивки начинает работать сразу. Чтобы можно было выбрать напряжение отключения драйвера «под себя», в конце статьи прилагается архив с прошивками под напряжения 3,1. 3,6 Вольт с шагом 0,1В.

Развожу печатку, травлю, запаиваю, пишу софт в AVR Studio 5, прошиваю микроконтроллер. На этапе изготовления платы нужно просверлить отверстия, и соединить перемычками дорожки с обеих сторон платы. Я взял медную жилу от витой пары, залудил её, и сделал из неё перемычки.

Вот что из этого получилось. Печатку и набор прошивок можно скачать в конце статьи.

На одной стороне платы (двусторонняя диаметром 18 мм) разместились все управляющие мозги, на другой стороне платы расположился драйвер светодиода с полигоном из меди для должного охлаждения. Опционально на плату может быть установлена вторая микросхема-драйвер AMC7135 для увеличения максимального выходного тока с 350 мА до 700 мА. Небольшие размеры платы выбраны не случайно — необходимо было уместить драйвер на родное место в корпусе. Вот фотка для оценки размеров получившейся платки:

Родной контроллер управления давал на светодиод следующий ток в режимах:

  • 1 режим, примерно 200 мА;
  • 2 режим, примерно 60 мА;
  • 3 режим, примерно 60 мА (мигающий).

Родной контроллер управляется по следующему алгоритму. При нажатии на кнопку выполнялся переход на следующий режим. 1 —> 2 —> 3 —> ВЫКЛ и так по циклу. Если нужный режим случайно пропустил, то придётся сидеть и «нащёлкивать» пока не дойдёшь до нужного режима. Также для выключения фонарика нужно «прощёлкать» все режимы. О быстром включении/отключении фонарика можно даже и не мечтать.

Моя плата контроллера с драйвером выдает следующие токи в разных режимах:

  • 1 режим, 30 мА;
  • 2 режим, 130 мА;
  • 3 режим, 350 мА (будет использоваться кратковременно, так как в корпусе фонарика не предусмотрено должного охлаждения для светодиода).

Мой контроллер управляется по следующему алгоритму. Однократное (короткое) нажатие выполняет включение/отключение фонарика (с сохранением последнего выбранного режима). Длительное удерживание кнопки выполняет переключение режима на следующий. Таким образом, мы имеем возможность как быстро включать/отключать фонарик, так и менять режимы. Надоедливого и бесполезного режима «мигалки» теперь нету. При снижении напряжения аккумулятора до заданного в «прошивке» уровня, фонарик переходит на предыдущий режим. Тоесть если стоял режим 3, то сначала контроллер включит режим 2, затем фонарик поработает какое-то время, затем включится режим 1, фонарик поработает ещё какое-то время, и только потом он выключится. В интернете уже есть аналогичные конструкции, но они либо имеют управление при помощи разрыва цепи питания, что не всегда оправданно, либо у них не используется режим сна, а это очень важно!!

Итак, выкидываем старые мозги, а также убираем конденсатор, зачем-то подключенный параллельно кнопке. Наверно китайцы боролись с дребезгом контактов. У меня обработка дребезга будет программная, поэтому конденсатор больше не нужен.

Также достаём штатный светодиод, будем менять его на эффективный светодиод CREE XPG с тёплым свечением.

Готовим наш новый светодиод:

Собираем оптический блок:

Теперь встраиваем новую плату управляющего контроллера и драйвера светодиода:

Таким образом, на внешний вид не произошло никаких изменений, но внутри теперь всё как и должно быть. Контроль разряда аккумулятора, стабилизация тока, нормальное управление режимами, и «правильный» светодиод. В выключенном состоянии контроллер потребляет мало энергии, так как микроконтроллер переводится в режим сна.

Читайте также:  Как отрегулировать клапана ваз 2106 схема

Позже был установлен нормальный контроллер заряда аккумулятора на микросхеме MAX1508, а также родной китайский аккумулятор был заменён на внешний блок аккумуляторов, состоящий из 2 оригинальных банок Sanyo UR18650.

В активном режиме микроконтроллер ATtiny13A потребляет менее 500 мкА благодаря работе на тактовой частоте 128 кГц. Также в активном режиме добавляется потребление AMC7135, потребление внешнего ИОН, и потребление внутреннего АЦП микроконтроллера. Суммарный ток потребления в активном режиме зависит от используемого ИОН, и может составлять от 0,1 мА до 1 мА. Я применил ИОН REF3125, суммарное потребление схемы в рабочем режиме составило 0,5. 0,8 мА.

ИОН REF3125 можно заменить на аналоги:

  • ADR381
  • CAT8900B250TBGT3
  • ISL21010CFH325Z-TK
  • ISL21070CIH325Z-TK
  • ISL21080CIH325Z-TK
  • ISL60002BIH325Z
  • MAX6002
  • MAX6025
  • MAX6035BAUR25
  • MAX6066
  • MAX6102
  • MAX6125
  • MCP1525-I/TT
  • REF2925
  • REF3025
  • REF3125
  • REF3325AIDB
  • TS6001

Прилагаю небольшое видео, демонстрирующее управление режимами. Видео снято давно, светодиод ещё тогда стоял родной, позже он был заменён на CREE XPG, также стоял родной аккумулятор. Лень было заново снимать видео. Также хочу предупредить, что не каждый программатор поддерживает прошивку микроконтроллеров на частоте 128 кГц. Для прошивки я использовал программатор «USBAsp» со включенной опцией «Slow SCK». Всем удачных самоделок!!

Ниже можно скачать пробную версию прошивки с ограничением по времени работы 10 минут. По истечении тестового времени, гаснет светодиод и блокируется управление. После переподключения аккумулятора, вновь получаем 10 минут тестового времени. Прошивка без ограничений предоставляется по запросу, пишите в личные сообщения.

Источник

Драйвер для светодиодного фонаря

Драйвер — ограничитель для светодиодного фонаря

В предыдущей самоделке «Аккумуляторный фонарь – настольная лампа» рассматривалось, в том числе, изменение светодиодной матрицы в приобретенном фонарике. Целью доработки было повышение надежности источника света, за счет изменения схемы подключения светодиодов, с параллельного включения на комбинированное.

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% сократит срок их службы в несколько раз.

Основной характеристикой светодиодов, которая определяют яркость их свечения, является не напряжение, а ток. Чтобы светодиоды гарантированно отработали заявленное количество часов, необходим драйвер, который стабилизирует протекающий через цепь светодиодов ток и длительно сохранит устойчивую яркость света.

Для маломощных светоизлучающих диодов, возможно их использование и без драйвера, но в этом случае его роль выполняют ограничительные резисторы. Такое подключение было использовано в приведенной выше самоделке. Это простое решение защищает светодиоды от превышения допустимого тока, в пределах расчетного источника питания, но стабилизация при этом отсутствует.

В этой статье, рассмотрим возможность усовершенствовать приведенную выше конструкцию и повысить эксплуатационные свойства фонаря с питанием от внешнего аккумулятора.

Для стабилизации тока через светодиоды, добавим в конструкцию фонаря простой линейный драйвер — стабилизатор тока с обратной связью. Здесь ток является ведущим параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах. Драйвер обеспечивает стабилизацию выходного тока при нестабильном входном напряжении или колебаниях напряжения в системе, причем подстройка тока происходит плавно, не создавая высокочастотных помех свойственных импульсным стабилизаторам. Схема такого драйвера крайне проста в изготовлении и настройке, но меньший КПД (около 80%) является за это платой.

Для исключения критического разряда источника питания (ниже 12 В), что особенно опасно для литиевых аккумуляторов, в схему дополнительно введем индикацию предельного разряда или отключение аккумулятора при низком напряжении.

1. Для решения указанных предложений изготовим следующую схему питания светодиодной матрицы.

Ток питания светодиодной матрицы проходит через регулирующий транзистор VT2 и ограничительное сопротивление R5. Ток через управляющий транзистор VT1 задается подбором сопротивления R4 и может изменяться в зависимости от изменения падения напряжения на резисторе R5, также используемом в качестве резистора токовой обратной связи. При увеличении тока в цепочке — светодиоды, VT2, R5, по какой-либо причине, увеличивается падение напряжения на R5. Соответствующее увеличение напряжения на базе транзистора VT1, приоткрывает его, уменьшая этим напряжение на базе VT2. А это прикрывает транзистор VT2, уменьшая и стабилизируя этим, ток через светодиоды. При уменьшении тока на светодиодах и VT2, процессы протекают в обратном порядке. Таким образом, за счет обратной связи, при изменении напряжения на источнике питания (с 17 до 12 вольт) или возможных изменениях параметров схемы (температура, выход из строя светодиода), ток через светодиоды постоянен в течение всего периода разряда аккумулятора.

Читайте также:  Как отрегулировать задний мост на паджеро

На детекторе напряжения, специализированной микросхеме DA1, собрано устройство для контроля напряжения. Микросхема работает следующим образом. При номинальном напряжении, микросхема DA1 закрыта и находится в дежурном состоянии ожидания. При уменьшении напряжения на выводе 1, подключенном к контролируемой цепи (в данном случае — источник питания), до определенного значения, вывод 3 (внутри микросхемы) соединяется с выводом 2, подключенным к общему проводу.

Приведенная выше схема имеет различные варианты включения.

Вариант 1. Если к выводу 3 (точка А) подключить индикаторный светодиод (LED1 – R3) соединенный с положительным проводом (см. принципиальную схему), получим индикацию предельного разряда аккумулятора. При снижении напряжения питания до определенного значения (в нашем случае 12 В) светодиод LED1 включится, сигнализируя о необходимости заряда аккумулятора.

Вариант 2. Если точку А соединить с точкой Б, то при достижении низкого напряжения (12 В) на аккумуляторе, получим автоматическое отключение светодиодной матрицы от питания. Детектор напряжения, микросхема DA1, при достижении контрольного напряжения, соединит базу транзистора VT2 с общим проводом и закроет транзистор, отключив светодиодную матрицу. При повторном включении фонаря на низком напряжении (менее 12 В), светодиоды матрицы загораются на пару секунд (за счет заряд/разряд С1) и вновь гаснут, сигнализируя о разряде аккумулятора.

Вариант 3. При объединении вариантов 2 и 3, при отключении светодиодной матрицы включится индикаторный светодиод LED1.
Основные достоинства схем на детекторе напряжения, простота схемного подключения (практически не требуется дополнительных деталей обвязки) и чрезвычайно низкое энергопотребление (доли микроампера) в дежурном состоянии (в режиме ожидания).

2. Собираем схему драйвера на монтажной плате.
Выполняем монтаж VT1, VT2, R4. Подключаем, в качестве нагрузки, светодиодную матрицу, рассмотренную в начале статьи. В цепь питания светодиодов включаем миллиамперметр. С целью возможности проверки и настройки схемы на стабильном и определенной величины напряжении, подключаем ее к регулируемому источнику питания. Подбираем сопротивление резистора R5, позволяющее стабилизировать ток через светодиоды во всем диапазоне планируемой регулировки (с 12 до 17 В). С целью повышения КПД, первоначально был установлен резистор R5 номиналом 3,9 ома (см. фото), но стабилизация тока во всем диапазоне (при фактически установленных деталях) потребовала установки номинала в 20 ом, так как не хватало напряжения для регулировки VT1 из-за малого тока потребления светодиодной матрицы.

Транзистор VT1 желательно подобрать с большим коэффициентом передачи тока базы. Транзистор VT2 должен обеспечить допустимый ток коллектора, превышающий ток светодиодной матрицы и рабочее напряжение.

3. Добавляем на монтажную плату схему индикатора — ограничителя предельного разряда. Микросхемы детектора напряжения выпускаются на различные значения контроля напряжения. В нашем случае, в связи с отсутствием микросхемы на 12 В, использовал имеющуюся в наличии, на 4,5 В (часто встречаются в отработавшей бытовой технике – телевизоры, видеомагнитофоны). По этой причине, для контроля напряжения в 12 В, добавляем в схему делитель напряжения на постоянном резисторе R1 и переменном R2, необходимом для точной настройки на нужное значение. В нашем случае, регулировкой R2, добиваемся напряжения 4,5 В на выводе 1 DA1 при напряжении 12,1…12,3 В на шине питания. Аналогично, при подборе делителя напряжения, можно использовать и другие подобные микросхемы — детекторы напряжения, различных фирм, наименований и контрольных напряжений.

Первоначально проверяем и настраиваем схему на срабатывание, по светодиодному индикатору. Затем проверяем работу схемы, соединив точки А и Б, на отключение светодиодной матрицы. Останавливаемся на выбранном варианте (1, 2, 3).

4. Готовим заготовку для рабочей платы, вырезав нужный размер из типовой универсальной платы.

5. Выполняем распайку отлаженной схемы на рабочую плату.

6. Подключаем светодиодную матрицу к рабочей плате и проверяем работу драйвера – ограничителя в сборе, во всем диапазоне планируемой регулировки (с 12 до 17 В), подключив драйвер к регулируемому источнику питания. При положительных результатах, проверяем работу драйвера подключенного к аккумулятору и в составе аккумуляторного фонаря. Дополнительной наладки обычно не требуется.

Источник

Adblock
detector