Меню

Что регулирует процессы обмена веществ в клетке



Обмен веществ

Роль и причины нарушения обмена веществ

Обмен веществ в организме человека

Обмен веществ — это набор химических реакций, обеспечивающий жизнедеятельность и рост клетки. Обмен веществ – это то, что является основой живого организма, это обмен между химическим составом человека и окружающей среды.

В обменных процессах нашего организма участвуют все химические и природные элементы – белки, жиры и углеводы. Выполняя каждый свою роль — белки, создавая строительный материал, а жиры с углеводами, регулируя баланс энергетических затрат – четко и слаженно взаимодействуют друг с другом. К ним в помощь приходят минеральные вещества и витамины, которые улучшают клеточную среду.

Обмен веществ состоит из двух сторон:

1. диссимиляция – разложение, распад питательных веществ.

2. ассимиляция – синтез, создание и усвоение организмом новых веществ.

Эти процессы идут параллельно и всю жизнь. Различают следующие этапы:

1. Поступление питательных веществ в организм

2. Всасывание их из пищеварительного тракта

3. Перераспределение и усвоение питательных веществ (тканевый этап)

4. Выделение остатков продуктов распада, которые не могут усвоиться в организме

Процессы обмена веществ идут в организме быстро и интенсивно, хотя в организме нет высокого давления и температуры. Эта быстрота обеспечивается участием ферментов и других веществ

Роль обмена веществ

Обмен веществ заслуживает того, чтобы уделить ему самое пристальное внимание. Ведь от его налаженной работы зависит снабжение наших клеток полезными веществами. Основу обмена веществ составляют химические реакции, происходящие в организме человека. Вещества, необходимые для жизнедеятельности организма мы получаем с пищей.

Дополнительно нам нужен ещё кислород, который мы вдыхаем вместе с воздухом. В идеале должно наблюдаться равновесие между процессами строительства и распада. Однако это равновесие часто может быть нарушено и причин этому есть масса.

Причины нарушения обмена веществ

Среди первых причин нарушения обмена веществ можно выделить наследственный фактор. Хотя он и неисправим, с ним можно и нужно бороться! Также нарушения обмена веществ могут быть вызваны органическими заболеваниями. Однако зачастую эти нарушения являются следствием нашего неправильного питания.

Как переизбыток полезных веществ, так и их недостаток очень вредит нашему организму. И последствия могут быть необратимыми. Избыток некоторых питательных элементов возникает в результате чрезмерного употребления жирной пищи, а недостаток — при строгом соблюдении различных диет для похудения. Основной диетой чаще всего является однообразное питание, что и ведет к недополучению необходимых питательных веществ, в свою очередь, это неизбежно приведёт к развитию различных болезней. Возможно возникновение аллергии на большую часть продуктов питания.

Болезни обмена веществ

Даже сбалансировав все обменные процессы, снабдив организм недостающими витаминами, мы рискуем получить ряд серьёзных заболеваний, вызванных продуктами распада наших клеток. Продукты распада имеют всё живое и растущее, а это и есть пожалуй самый опасный враг для нашего здоровья. Иначе говоря, организм должен вовремя очищаться от токсинов, либо они просто начнут отравлять его. Оставаясь в избытке, продукты распада вызывают хронические болезни и замедляют работу всего организма.

При нарушениях углеводного обмена возникает тяжелое заболевание — сахарный диабет, при неправильном жировом обмене накапливается холестерин (Как снизить уровень холестерина в домашних условиях без лекарств?), вызывающий болезни сердца и сосудов. Свободные радикалы, которых становится в избытке, способствуют возникновению злокачественных образований.

Частым последствием проблем с обменом веществ также является ожирение. К этой же группе также можно отнести подагру, нарушения пищеварения, некоторые формы сахарного диабета и т.п. Нарушение баланса минеральных веществ и витаминов ведет к поражению мышц, костей, тяжелым нарушениям сердечно-сосудистой системы. У детей это может привести к очень серьезным последствиям в виде задержки роста и развития. Стоит заметить, что не всегда рекомендуется дополнительное употребление витаминов, ведь их переизбыток также может иметь негативные последствия.

Профилактика

Чтобы урегулировать обменные процессы в своем организме, мы должны знать, что есть некоторые вещества, препятствующие образованию токсинов и улучшающие качество обмена.

Во-первых, это кислород. Оптимальное количество кислорода в тканях значительно активизирует обменные процессы.

Во-вторых, витамины и минералы. С возрастом все процессы замедляются, происходит частичная закупорка сосудов, поэтому важно контролировать получение достаточного количества минеральных веществ, углеводов и кислорода. Это обеспечит хорошую работу водно-солевого обмена клетки, так как по прошествии времени клетка высыхая, больше не получает все необходимые элементы для своей жизнедеятельности. Зная это, нам важно искусственно питать стареющие клетки.

Существует масса рекомендаций и препаратов, регулирующих обмен веществ. В народной медицине широкую популярность завоевала водоросль Белого моря — фукус, она содержит ценный набор минеральных веществ и полезных витаминов, необходимых для улучшения обмена веществ. Правильное питание, исключение из рациона продуктов, содержащих холестерин и другие вредные вещества — ещё один путь к безупречной работе организма.

Образование: Московский медицинский институт им. И. М. Сеченова, специальность — «Лечебное дело» в 1991 году, в 1993 году «Профессиональные болезни», в 1996 году «Терапия».
Наши авторы

Источник

Что регулирует процессы обмена веществ в клетке

В данной главе представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным образом, регуляция метаболизма. Конечной целью регуляции обмена веществ и энергии является обеспечение потребностей организма, его органов, тканей и отдельных клеток в энергии и в разнообразных веществах в соответствии с уровнем функциональной активности. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей с потребностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды и синтезированных внутри организма.

Читайте также:  Регулировка карбюратора к 750 видео

Обмен веществ, протекающий внутри организма, не связан непосредственно с окружающей средой. Питательные вещества, прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молекулярной форме. Кислород, необходимый для биологического окисления, должен быть получен из воздуха в легких, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энергии, также обслуживают обмен веществ и энергии, обеспечивая поиск, прием и обработку пищи. Непосредственное отношение к обмену веществ и энергии имеет выделительная система. Таким образом, регуляция обмена веществ и энергии является мультипараметрической, включающей в себя регулирующие системы множества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играют ядра гипоталамуса. Они имеют непосредственное отношение к генерации чувства голода и насыщения, теплообмену, осморегуляции. В гипоталамусе имеются полисенсорные нейроны, реагирующие на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т. е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма.

В качестве звеньев эфферентной системы регуляции обмена используются симпатический и парасимпатический отделы вегетативной нервной системы. Вьщеляющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными посредниками влияние на функцию и метаболизм тканей. Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии — эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жирные кислоты, минеральные вещества.

Химическая энергия питательных веществ используется для ресинтеза АТФ, выполнения всех видов работы и процессы, протекающие внутри клетки. Поэтому важнейшим эффектором, через который оказывается регулирующее воздействие на обмен веществ и энергии, являются клетки органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Наиболее частыми эффектами регуляторных воздействий на клетку являются изменения каталитической активности ферментов и их концентрации, сродства фермента и субстрата, свойств микросреды, в которой функционируют ферменты. Регуляция активности ферментов может осуществляться различными способами. «Тонкая настройка» каталитической активности ферментов достигается посредством влияния веществ — модуляторов, которыми нередко являются сами метаболиты.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений. Эта интеграция обеспечивается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осуществляется посредством общих для них источников энергии. При биосинтезе любых простых и сложных органических соединений, макромолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД • Н, НАДФ • Н, поставляющих энергию для восстановления окисленных соединений других веществ. За общий энергетический запас клетки, полученный в ходе катаболизма, конкурируют все анаболические процессы, протекающие с затратой энергии. Так, например, при осуществлении печенью синтеза глюкозы из лактата и аминокислот (глюконеогенез) она не может одновременно синтезировать жиры и белки. Глюконеогенез сопровождается расщеплением в печени белков и жиров и окислением образующихся при этом жирных кислот, что ведет к освобождению энергии, необходимой для синтеза АТФ и НАД- Н, необходимых для глюконеоге-неза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов в клетке является существование общих предшественников и общих промежуточных продуктов обмена веществ. Общим промежуточным продуктом обмена является ацетил-КоА. Важнейшими конечными путями превращений веществ в клетке являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Цикл лимонной кислоты — главный источник С02 для последующих реакций глюконеогенеза, синтеза жирных кислот и мочевины.

Одним из механизмов согласования общих метаболических потребностей организма с потребностями клетки являются нервные и гормональные влияния на ключевые ферменты. Характерными особенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; приближенность расположения или ассоциированность со своим субстратом; реагирование не только на действие внутриклеточных регуляторов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Примерами ключевых ферментов являются гликогенфосфорилаза, фосфофруктокиназа, липаза. Их роль в процессах регуляции метаболизма видна, в частности, при подготовке организма к «борьбе или бегству». При повышении в этих условиях в крови уровня адреналина до 10-9 М он связывается с адренорецепторами плазматической мембраны, активирует аде-нилатциклазу, которая катализирует превращение АТФ в циклический АМФ. Последний активирует гликогенфосфорилазу, многократно усиливающую расщепление гликогена в печени.

Процесс гликогенолиза в мышцах может одновременно активироваться нервной системой и катехоламинами. Этот эффект достигается с участием ионов Са2+, который связывается с кальмодулином, являющимся субъединицей фосфорилазы. Она при этом активируется и приводит к мобилизации гликогена. Нервный механизм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Читайте также:  Регулировка игольчатого клапана карбюратора солекс

Удовлетворение энергетических потребностей организма посредством ускорения внутриклеточных процессов расщепления триглицеридов в жировой клетчатке достигается активацией гормончувствительной липазы. Повышение активности этого фермента (адреналином, норадреналином, глюкагоном) приводит к мобилизации свободных жирных кислот, являющихся основным энергетическим субстратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной активности на другой всегда сопровождается соответствующими изменениями их трофики (питания). Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое влияние путем усиления в них местного кровотока и интенсивности обмена веществ. Увеличение силы сокращений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на трофику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важнейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке.

Норадреналин и адреналин, выброс которых в кровоток возрастает при возбуждении симпатической нервной системы, вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систолическое артериальное давление. В результате активации дыхания и кровообращения возрастает доставка кислорода к тканям.

Источник

Лекция №15 Обмен веществ в клетке

Обмен веществ(метаболизм) – совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. По субстрату, подлежащему обмену, различают белковый жировой , углеводный обмен, обмен воды и минеральных веществ.

В обмене веществ различают две стороны: ассимиляцию и диссимиляцию.

Ассимиляция – (пластический обмен, анаболизм) – эндотермический процесс уподобления веществ, поступающих в клетку, специфическим веществам самой клетки. Идет в цитоплазме клетки.

Диссимиляция – (энергетический обмен, катаболизм — экзотермический процесс распада веществ клетки до простых неспецифических соединений. Начинается в цитоплазме, заканчивается в митохондриях с образованием энергии.

Этапы энергетического обмена:

I. Подготовительный. Крупные полимеры (белки, жиры, углеводы) распадаются на мономеры (глицерин, высшие жирные кислоты, аминокислоты, глюкозу) в реакциях гидролиза. У одноклеточных животных идет в пищеварительных вакуолях, в клетках тканей в — лизосомах. У многоклеточных в желудочно – кишечном тракте выделяется 1% энергии в виде тепла, она рассеивается.

II. Бескислородный — происходит гликолиз или молочно – кислое брожение – расщепление глюкозы в цитоплазме клеток до молочной кислоты. Освободившаяся энергия (30%) расходуется на синтез 2 молекул АТФ. У некоторых микроорганизмов , а так же иногда в клетках животных глюкоза может расщепляться до этанола. Остальная энергия рассеивается в виде тепла.

Аминокислоты, высшие жирные кислоты, глицерин способны расщепляться до молочной кислоты и, иногда, спирта, с освобождением энергии (до 30% суммарной энергии процесса).

III. Кислородный – универсальный этап, он одинаков для распада аминокислот, глюкозы, высших жирных кислот. Расщепление всех типов органических веществ заканчивается образованием CO2 и H2O. В частности при расщепление 2 молекул молочной кислоты высвобождается энергия и синтезируется 36 молекул АТФ. Происходит в митохондриях, где есть ферменты и атомарный кислород. Весь процесс окисления органических соединений в присутствии О2 называется тканевым дыханием (или биологическим окислением). Энергия выделяется дискретно (порциями), идет на синтез АТФ и частично рассеивается в виде тепла. По типу диссимиляции выделяют аэробов (осуществляют дыхание) и анаэробов (осуществляют брожение).

Этапы пластического обмена.

I. Из простых веществ (CO2, H2O, NH3) и множества промежуточных соединений (молочная кислота, глицерин и др.) синтезируется необходимые для организма аминокислоты, высшие жирные кислоты, моносахара, азотные основания.

II. Происходит сборка из мономеров сложных высокомолекурных соединений. белков, жиров, углеводов, нуклеиновых кислот. Эти реакции протекают на мембранах ЭПС и комплекса Гольджи в рибосомах.

По типу ассимиляции выделяют 3 группы организмов:

Условия, обеспечивающие более интенсивный обмен веществ.

1.Каждая клетка сама синтезирует себе белки, липиды, полисахариды, нуклеиновые кислоты.

2.Каждая реакция, происходящая в клетке, катализируется отдельным ферментом.

3.Ферментные процессы возможны благодаря особому физическому состоянию цитоплазмы, которая представляет собой коллоидный раствор белков.

Ферменты, их группы. Fermentum – закваска (энзим). Известно около 2 х тысяч ферментов.

Все химические реакции в клетке идут с участием биологических катализаторов – ферментов. Все ферменты – белки, но не все белки – ферменты. В структуре белков – ферментов выделяют активный центр. Это небольшой участок молекулы белка, на котором идет определенная химическая реакция. Ферменты специфичны. Они катализируют определенные химические реакции и преобразуют строго определенные химические вещества в клетке.

Выделяют несколько групп ферментов: липазы, амилазы, нуклеазы, протеазы, трансферазы, оксидоредуктазы и др. (действуют соответственно на жиры, углеводы, нуклеиновые кислоты, белки;катализируют перенос химических групп с одной молекулы на другую; участвуют в окислении одного субстрата и восстановлении другого).

Условия для действия ферментов.

2.Определенная температура (до 50 0 С).

4. Оптимальная ионная сила.

5. Гидратная оболочка – поддерживает структуру фермента и его активного центра.

Читайте также:  Регулировка клапанов bmw m30b30

6.Наличие коферментов – веществ небелковой природы (ионы тяжелых металлов, аминокислоты, витамины), входящих в состав активного центра фермента, устойчивы к температуре. Коферменты усиливают активность фермента.

Ферменты действуют на:

1. одно вещество (лактаза только на лактозу)

2. химическую связь (липаза – на жиры)

Нуклеиновые кислоты были открыты в 1870 году швейцарским биохимиком Ф.Мишером. Он выделил из ядра клетки вещество, содержащее азот и фосфор, и назвал его нуклеином (nucleus – ядро). Позже выявили в нём несколько видов нуклеиновых кислот.

Нуклеиновые кислоты – это природные высокомолекулярные соединения, обеспечивающие хранение, передачу и реализацию наследственной информации в живых организмах.

Виды нуклеиновых кислот:

I. ДНК — дезоксирибонуклеиновая кислота

II. РНК — рибонуклеиновая кислота

ДНК: 1) Двуспиральный полимер, состоящий из мономеров – нуклеотидов.

2) Строение нуклеотида:

а) одно из 4 –х азотистых оснований

пуриновые А – аденин

пиримидиновые Т – тимиин

Нуклеотидный состав количественно проанализировал американский биохимик Эдвин Чаргафф (1902 г) и сделал вывод: «число пуриновых оснований всегда равно числу пиримидиновых; количество аденина равно количеству тимина, а гуанина – цитозину (правило Чаргаффа).

Комплиментарные пары азотистых оснований – А =Т, ГºЦ

б) углевод – дезоксирибоза

в) один остаток фосфорной кислоты

3). Локализация в клетке – в хромосомах органеллах цитоплазмы (митохондриях, пластидах, центросоме).

4. Функции: а) хранение наследственной информации

б) передача наследственной информации

в) реализация наследственной информации в ходе биосинтеза белка

РНК. 1. Одно-цепочный полимер, мономером является нуклеотид.

2. Строение нуклеотида:

а) одно из четырех азотистых оснований:

б) углевод – рибоза

в) один остаток фосфорной кислоты

3. Локализация в клетке — ядрышко, рибосомы,цитоплазма.

1. и-РНК (5% от всей РНК клетки) — содержит информацию о строении белка и состоит из 300 – 3000 нуклеотидов.

Существует в 2 х формах:

а) незрелая и-РНК (и-РНК – предшественница, про-и-РНК). Синтезируется на молекуле ДНК. У эукариот включает в себя экзоны (кодирующие участки) и интроны (некодирующие участки). При переходе из ядра в цитоплазму претерпевает процессинг (созревание). У прокариот в процессе созревания происходит укорочение молекулы незрелой и-РНК за счёт «отрезания» её концевых участков. У эукариот созревание происходит за счёт вырезания интронов и «сшивания» оставшихся экзонов. Таким образом, в результате процессинга образуется вторая форма – б) зрелая и-РНК, которая несёт информациюо порядке расположения аминокислот в молекуле белка.

2. т-РНК (10% от всей РНК клетки) — транспортирует аминокислоты к рибосомам. Состоит из 70 – 100 нуклеотидов. Выделяют 61 вид. Синтезируется в ядрышке.

3.р-РНК (85% от всей РНК клетки) – является структурным компонентом рибосом, контролирует начало и окончание синтеза белковой молекулы. Синтезируется в ядрышке, содержит 3 – 5 тысяч нуклеотидов.

Генетический код – это схема расположения трех нуклеотидов, следующих друг за другом в молекуле ДНК и определяющих место аминокислот в молекуле белка. Начал расшифровку генетического кода Ниренберг.

Основные свойства генетического кода.

1.Генетический код триплетен. Каждую аминокислоту в молекуле белка кодируют три нуклеотида молекулы ДНК – триплет, кодон. Есть таблица всех кодонов.

2.Генетический код избыточен (вырожден). Это значит, что для кодирования 20-и аминокислот существует 64 комбинации триплетов (число сочетаний из 4-х по 3). Одну и ту же аминокислоту могут кодировать несколько триплетов (до 6-и). Они отличаются по последнему (3-му) азотистому основанию.

3. Генетический код коллинеарен. Тип и последовательность триплетов нуклеотидов молекулы ДНК строго соответствует типу и последовательности аминокислот в молекуле белка.

4. Код «не имеет запятых» — непрерывен. Между триплетами нуклеотидов в ДНК нет никаких дополнительных знаков, разделяющих их. Если выпадает или вставляется одно азотистое основание, то считывание идет дальше, т.е. включается в кодон следующее азотистое основание.

5. Генетический код не перекрывается. Считывание информации в гене происходит последовательно триплет за триплетом. Одно и то же азотистое основание не может одновременно входить в два кодона.

6. Генетический код специфичен. Определенную аминокислоту кодируют строго определенные триплеты (кодоны). Реально кодируют аминокислоты 61 триплет. Существует 3 бессмысленных триплета (УАГ, УАА, УГА). Они не кодируют аминокислоты, но смогут указывать на начало и конец гена, т.е. «точки» генетического кода.

7. Генетический код универсален для всех видов живых организмов на Земле от вирусов и бактерий для человека. Один и тот же триплет нуклеотидов у организмов любого вида кодирует одну и ту же аминокислоту.

Поток информации – перенос информации с ДНК на белок.

Компоненты потока информации:

1. Ядро (ДНК хромосом)

3. Аппарат трансляции (рибосомы и полисомы, т-РНК, ферменты активации аминокислот)

4. Генетический код.

Этапы биосинтеза белка.

I Транскрипция – переписывание генетической информации с ДНК на РНК. При этом образуются две формы и-РНК: про-и-РНК, незрелая и зрелая и-РНК.

II. Трансляция – расшифровка генетической информации и ее перевод с языка нуклеотидов ДНК и и-РНК на язык аминокислот молекулы белка

Поток энергии — у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспечения – брожением, фото – и хемосинтезом, дыханием.

Поток веществ – метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.

Дата добавления: 2013-12-12 ; Просмотров: 1277 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector