Меню

Arduino регулировка скорости двигателя



УПРАВЛЕНИЕ МОТОРОМ С ARDINO

Библиотека подходит для большинства драйверов, построенных по схеме H-мост, на два мотора они обычно имеют 4 входа (по 2 на каждый). Также на сайте есть отдельный подробный урок по работе с коллекторными моторами.

Драйвер Vmot Ток (пик)

Стоимость

Aliexpress
L298N 4-50V 1A (2A) 100р Купить
MX1508 2-9.6V 1.5A (2.5A) 20р Купить
TA6586 3-14V 5A (7A) 100р (чип 30р) Купить, купить, купить чип
L9110S 2.5-12V 0.8A (1.5A) 50р Купить
TB6612 4.5-13.5V 1.2A (3A) 80р Купить
BTS7960 5.5-27V 10A (43A) 300р Купить
Большой 3-36V 10A (30A) 700р Купить

БИБЛИОТЕКА GYVERMOTOR

GyverMotor v3.1

Библиотека для удобного управления моторчиками через драйвер полного моста для Arduino

  • Контроль скорости и направления вращения
  • Работа с 10 битным ШИМом
  • Программный deadtime
  • Отрицательные скорости
  • Поддержка двух типов драйверов и реле
  • Плавный пуск и изменение скорости

Поддерживаемые платформы: все Arduino (используются стандартные Wiring-функции).

В версии 2.2 добавлена поддержка плат на базе ESP

Подключение

Библиотека подходит для большинства драйверов, построенных по схеме H-мост, на два мотора они обычно имеют 4 входа (по 2 на каждый)

ДОКУМЕНТАЦИЯ

Документация

Инициализация

Библиотека поддерживает три типа драйверов:

  • DRIVER2WIRE – двухпроводной драйвер (направление + ШИМ)
  • DRIVER2WIRE_NO_INVERT – двухпроводной драйвер, в котором при смене направления не нужна инверсия ШИМ
  • DRIVER3WIRE – трёхпроводной драйвер (два пина направления + ШИМ)
  • RELAY2WIRE – реле в качестве драйвера (два пина направления)

Инициализация происходит следующим образом:

  • GMotor motor(DRIVER2WIRE, dig_pin, PWM_pin, level);
  • GMotor motor(DRIVER3WIRE, dig_pin_A, dig_pin_B, PWM_pin, level);
  • GMotor motor(RELAY2WIRE, dig_pin_A, dig_pin_B, level);
  • dig_pin , dig_pin_A , dig_pin_B – любой цифровой пин МК
  • PWM_pin – любой ШИМ пин МК
  • level – LOW / HIGH – уровень драйвера. Если при увеличении скорости мотор наоборот тормозит – смени уровень

Настройки

  • setDeadtime(us) – установка программного deadtime на переключение направления, us в микросекундах. По умолчанию стоит 0: deadtime отключен
  • setDirection(dir) – ГЛОБАЛЬНАЯ смена направления вращения мотора например чтобы FORWARD совпадал с направлением движения “вперёд” у машинки. dir – REVERSE или NORMAL (умолч.)
  • setLevel(level) – смена уровня драйвера (аналогично при инициализации). Если при увеличении скорости мотор наоборот тормозит – смени уровень. level – LOW или HIGH
  • setMinDuty(duty) – минимальный сигнал (по модулю), который будет подан на мотор. Автоматически сжимает диапазон регулирования мотора: например minDuty поставили 50, и при сигнале 1 будет на мотор будет подано

51, максимум останется прежним (диапазон сигнала переведётся в 50.. 255 внутри библиотеки).

Режим работы

У мотора есть 5 режимов работы, устанавливаются при помощи setMode(mode) , где mode:

  • FORWARD – вперёд
  • BACKWARD – назад
  • STOP – холостой (мотор отключен)
  • AUTO – отдать управление функции setSpeed()

Управление скоростью и направлением

Скорость устанавливается при помощи функции setSpeed(speed) . Есть два варианта управления скоростью:

  • Направление в ручном режиме, скорость 0..255 (0..1023). В этом случае скорость должна быть положительной ( setSpeed(0..255) ), направление вращения задаётся при помощи setMode() . При направлении FORWARD частота оборотов растёт по мере увеличения setSpeed(speed) , при направлении BACKWARD частота оборотов растёт в противоположную сторону по мере увеличения setSpeed(speed) .
  • Направление в автоматическом режиме, скорость -255..255 (-1023..1023 для 10 бит). В этом случае устанавливаем setMode(AUTO) и подаём скорость во всём диапазоне. При значении мотор -255 крутится с максимальной скоростью в направлении “назад”, при 255 – в направлении “вперёд”. При значении 0 (ноль) режим автоматически переключается на STOP. Если задан параметр minDuty (при помощи setMinDuty() ), то режим STOP будет автоматически активирован при значении скорости в пределах (-minDuty, minDuty). Пример: у нас есть мотор, экспериментально установлено, что он начинает вращаться при величине скорости больше 50 (и, соответственно, меньше -50), при меньшем значении он просто “пищит” и стоит на месте. Если мы выставим setMinDuty(50) , то в диапазоне -50..50 мотор автоматически будет находиться в режиме STOP и не будет пищать при “шуме” задающего сигнала.

Разрешение ШИМ

setSpeed(speed) может работать с ШИМ любого разрешения, для этого нужно

  • Перевести таймер в режим нужного разрешения. 8 битные таймеры можно запустить только на пониженном разрешении, а 16 битный – например на 10 битах (выводы D9 и D10), смотрите пример в библиотеке и урок по частоте ШИМ. По Arduino MEGA пока что такого готового набора у меня нет.
  • Настроить нужный объект класса GMotor на нужное разрешение при помощи setResolution(bit) , где bit – разрешение ШИМ в битах (по умолчанию 8). Также не забыть подключить пин драйвера ШИМ к выводу настроенного в первом пункте таймера (смотри пример).

Несколько моторов могут работать на одной плате с разным разрешением, т.е. например 2 мотора на таймере 1 с разрешением 10 бит, и ещё два на таймере 2 с разрешением 8 бит.

Плавное управление скоростью

В библиотеке реализован готовый инструмент для плавного изменения скорости, что может обеспечить плавный пуск и остановку механизмов:

  • setSmoothSpeed(acc) – установка скорости изменения скорости (т.е. ускорения) мотора
  • smoothTick(speed) – данная функция сама меняет скорость мотора, плавно приближая её к указанной speed . Функция работает по встроенному таймеру на millis() с периодом 50 мс, то есть рекомендуется вызывать smoothTick(speed) не реже, чем каждые 50 мс.

В примере smooth_control можно открыть плоттер и посмотреть, как работает алгоритм.

Источник

Мир микроконтроллеров

Популярное

Управление двигателем постоянного тока с помощью Arduino Uno

В этой статье мы будем подключать двигатель постоянного тока к Arduino Uno и управлять скоростью его вращения. Делать мы это будем с помощью ШИМ (широтно-импульсной модуляции, в англ. языке PWM — Pulse Width Modulation) – эта функция реализована в Arduino чтобы на основе постоянного напряжения иметь возможность получения изменяющегося напряжения.

Общие принципы ШИМ

Метод осуществления ШИМ показан на следующем рисунке.

Если на представленном рисунке кнопка нажата, то двигатель начнет вращение и он будет вращаться до тех пор пока кнопка не будет отжата. Эта ситуация происходит если кнопка будет нажата постоянно – верхний график на представленном рисунке. Если же мы будем нажимать кнопку только в течение 8 мс из всего цикла в 10 мс, то в этом случае двигатель уже не будет в полной мере получать все напряжение батареи 9 В – в этом случае среднеквадратичная величина напряжения, получаемого двигателем, будет около 7 В. Соответственно, двигатель по сравнению с первым случаем (когда кнопка нажата постоянно) будет вращаться с меньшей скоростью. Поэтому цикл занятости (который еще называют коэффициентом заполнения ШИМ) в этом случае составит время включенного состояния/(время включенного состояния + время выключенного состояния) = 8/(8+2)=80%.

В следующих рассмотренных на рисунке случаях кнопка будет находиться в нажатом состоянии еще меньше чем в рассмотренном случае (80%). Соответственно, среднеквадратичная величина напряжения, получаемого двигателем, будет составлять еще меньшую величину, поэтому и скорость вращения двигателя также уменьшится. Это уменьшение скорости вращения двигателя вследствие уменьшения среднеквадратичной величины напряжения будет происходить до тех пор, пока получаемое двигателем напряжение не станет не достаточным для его вращения. То есть, изменяя величину цикла занятости (коэффициент заполнения ШИМ), можно управлять скоростью вращения двигателя постоянного тока.

Принцип работы H-моста

Перед тем, как переходить непосредственно к управлению двигателем, обсудим что такое H-BRIDGE (H-мост). Собранная нами далее схема будет осуществлять две функции: управлять двигателем постоянного тока с помощью управляющих сигналов малой мощности и изменять направление вращения двигателя.

Нам известно, что для изменения направления вращения двигателя постоянного тока необходимо изменить полярность приложенного к нему питающего напряжения. И как раз для смены полярности напряжения хорошо подходит устройство, называемое H-мостом. На представленном выше рисунке мы имеем 4 выключателя. Как показано на рисунке 2 если выключатели A1 и A2 замкнуты, то ток через двигатель течет справа налево как показано на второй части рисунка 2 – то есть в этом случае двигатель будет вращаться по часовой стрелке. А если выключатели A1 и A2 разомкнуты, а B1 и B2 – замкнуты, то ток через двигатель в этом случае будет протекать слева направо как показано на второй части рисунка, то есть двигатель будет вращаться против часовой стрелки. В этом и заключается принцип работы H-моста.

Рисунок 2 (часть 1)

Рисунок 2 (часть 2)

Мы в качестве H-моста будем использовать специализированную микросхему L293D, которую еще называют драйвером двигателей. Эта микросхема предназначена для управления двигателями постоянного тока малой мощности (см. рисунок) и содержит в своем составе два H-моста, то есть с ее помощью можно управлять двумя двигателями. Эта микросхема часто используется для управления двигателями в различных роботах.

В следующей таблице указаны необходимые значения напряжений на выводах INPUT1 и INPUT2 микросхемы L293D для смены направления вращения двигателя.

Enable Pin Input Pin 1 Input Pin 2 Motor Direction
High Low High вправо
High High Low влево
High Low Low стоп
High High High стоп

То есть, чтобы двигатель вращался по часовой стрелке необходимо чтобы на 2A было напряжение высокого уровня (high), а на контакте 1A – напряжение низкого уровня (low). Аналогично для вращения двигателя против часовой стрелки необходимо обеспечить на 1A напряжение высокого уровня, а на 2A – низкого.

Как показано на следующем рисунке Arduino UNO имеет 6 ШИМ каналов (обозначенных на плате специальным знаком – тильдой), любой из которых мы можем использовать для получения изменяющего напряжения (на основе ШИМ). В данном проекте мы будем использовать в качестве ШИМ выхода контакт PIN3 Arduino UNO.

Необходимые компоненты

  1. Плата Arduino UNO (купить на AliExpress).
  2. Драйвер двигателей L293D (купить на AliExpress).
  3. Электродвигатель постоянного тока.
  4. Светодиод.
  5. Резистор 10 кОм (2 шт.).
  6. Кнопка (2 шт.).
  7. Конденсатор 100 пФ.
  8. Переключатель.
  9. Источник питания с напряжением 5 В.

Работа схемы

Схема устройства (на макетной плате) представлена на следующем рисунке.

В рассматриваемой схеме мы имеем две кнопки, у каждой из которых, естественно, будет присутствовать эффект, называемый «дребезгом контактов». Но в данном случае для нас он не будет нести никакого негативного эффекта и не будет вызывать ошибок в работе схемы.

На нашем сайте мы уже рассматривали управление ШИМ с помощью микроконтроллера AVR ATmega и это управление было не самым простым делом – необходимо было сконфигурировать различные регистры. В отличие от этого управление ШИМ в Arduino UNO является крайне простым занятием, не требующем всего этого.

Исходный код программы

По умолчанию все необходимые заголовочные файлы подключаются автоматически самой средой ARDUINO IDE, она же конфигурирует сама и все регистры, необходимые для работы ШИМ, поэтому нам в программе уже не нужно заботиться об этих вещах. Все что нам нужно будет сделать – это определить на каком контакте мы будем использовать ШИМ.

То есть для использования ШИМ на нужном контакте нам необходимо сделать следующие вещи:

pinMode(ledPin, OUTPUT)
analogWrite(pin, value)
analogWriteResolution(neededresolutionnumber)

Сначала мы должны выбрать один из доступных 6 выходов (контактов) ШИМ. Потом необходимо установить этот контакт в режим на вывод данных.

После этого мы должны задействовать функции ШИМ на этом выходе используя функцию “ analogWrite(pin, value) ”. Здесь ‘pin’ обозначает номер контакта, на котором мы будем использовать ШИМ, в нашем случае это будет 3-й контакт.

Value в этой функции представляет собой цикл занятости (коэффициент заполнения) ШИМ, оно может принимать значения от 0 (всегда выключено) до 255 (всегда включено). Мы будем увеличивать и уменьшать это значение с помощью кнопок, присутствующих на схеме.

Плата Arduino UNO имеет максимальное разрешение (разрешающую способность) ШИМ, равную 8, что означает что value в функции analogWrite(pin, value) может принимать значения от 0 до 255. Но если в этом есть необходимость, мы можем уменьшать разрешение ШИМ используя функцию “ analogWriteResolution() ”, в скобках которой мы можем записать число в диапазоне 4-8, которое и будет определять разрешающую способность ШИМ платы Arduino UNO.

Переключатель на схеме служит для изменения направления вращения двигателя.

А теперь непосредственно сам код программы с комментариями.

Источник

Мир микроконтроллеров

Популярное

Управление скоростью вращения двигателя постоянного тока с помощью Arduino

Двигатель постоянного тока – это наиболее часто используемый тип двигателя в робототехнике и электронных устройствах. Для управления скоростью вращения такого двигателя можно использовать различные методы, но в этом проекте мы будем использовать для этой цели широтно-импульсную модуляцию (ШИМ). Управлять скоростью вращения двигателя постоянного тока мы будем с помощью потенциометра, поворачивая его ручку.

Общий принцип использования ШИМ

Управляя скоростью модуляции ШИМ (Pulse Width Modulation, PWM) можно регулировать, к примеру, силу свечения светодиода – данный принцип пояснен на следующем рисунке. Аналогичный механизм используется и для управления скоростью вращения двигателя.

Если на представленном рисунке выключатель будет замкнут на протяжении некоторого времени, то на протяжении этого же времени лампочка будет гореть. Если переключатель будет замкнут в течение 8ms и будет разомкнут 2ms в течение интервала 10ms, тогда лампочка будет гореть только в течение интервала 8ms. В рассмотренном примере можно сказать, что среднее выходное напряжение (на лампочке) будет составлять 80% от напряжения батареи.

В другом случае выключатель замыкается на 5ms и размыкается на эти же самые 5ms в течение интервала 10ms, таким образом среднее напряжение на лампочке будет составлять 50% от напряжения батареи. Принято говорить, что если напряжение батареи 5В и цикл занятости составляет 50%, то среднее напряжение на оконечном устройстве (лампочке) будет составлять 2.5В.

В третьем рассмотренном на рисунке случае цикл занятости составляет 20% и поэтому среднее напряжение на оконечном устройстве (лампочке) будет составлять 20% от напряжения батареи.

Применяя все сказанное к рассматриваемому нами примеру управления скоростью вращения двигателем можно сказать, что чем больше будет коэффициент заполнения ШИМ (отношение длительности ON состояния к периоду), тем выше будет скорость вращения двигателя.

Необходимые компоненты

  1. Плата Arduino UNO (купить на AliExpress).
  2. Двигатель постоянного тока.
  3. Транзистор 2N2222.
  4. Потенциометр 100 кОм.
  5. Конденсатор 0.1 нФ.
  6. Макетная плата.
  7. Соединительные провода.

Схема устройства

Представлена на следующем рисунке.

Объяснение работы программы

Полный текст программы приведен в конце статьи, в этом разделе объяснено назначение ключевых элементов кода.

В ниже представленных строчках кода мы инициализируем переменные c1 и c2 и назначаем аналоговый контакт A0 выходу потенциометра, а 12-й контакт будем использовать для ШИМ.

Источник

Читайте также:  Регулировка дверей peugeot 308